[nlp] grad norm先降后升再降

grad norm先降后升再降正常嘛

在深度学习中,梯度的范数通常被用来衡量模型参数的更新程度,也就是模型的学习进度。在训练初期,由于模型参数的初始值比较随机,梯度的范数可能会比较大,这是正常现象。随着模型的训练,梯度的范数通常会逐渐减小,直到收敛到一个较小的值。

在某些情况下,梯度的范数可能会先下降,然后上升再下降,这也是正常现象。这种现象通常出现在 模型的学习率过大或者网络结构过于复杂 的情况下。在这种情况下,模型可能会在学习过程中 跳过某些局部最优解,导致梯度的范数先下降后上升再下降。

如果梯度的范数出现了不正常的变化,例如一直上升或一直下降,可能意味着模型存在问题,需要进行调整。例如,可以尝试调整模型的超参数,如学习率、正则化系数等,或者修改模型的结构。此外,还可以尝试使用不同的优化器或损失函数来训练模型,以寻找更好的训练效果。

相关推荐
attitude.x18 分钟前
GEO优化供应商:AI搜索时代的“答案”构建与移山科技的引领,2025高性价比实战指南
人工智能·科技
井云AI1 小时前
井云智能体封装小程序:独立部署多开版 | 自定义LOGO/域名,打造专属AI智能体平台
人工智能·后端·小程序·前端框架·coze智能体·智能体网站·智能体小程序
张较瘦_1 小时前
[论文阅读] 人工智能 + 软件工程 | 技术债务管理新范式:五步法工作坊与行动研究实践
人工智能·软件工程
杨杨杨大侠1 小时前
Spring AI 系列(一):Spring AI 基础概念与架构入门
人工智能·spring·架构
nenchoumi31192 小时前
手持 Mid360 + RealSense 相机 + Jetson Orin 一体平台
人工智能·目标检测·计算机视觉·机器人·ros
大力财经3 小时前
百度Q2财报:总营收327亿 AI新业务收入首次超100亿
人工智能·百度
OAFD.8 小时前
机器学习之线性回归:原理、实现与实践
人工智能·机器学习·线性回归
SHIPKING39310 小时前
【机器学习&深度学习】LMDeploy的分布式推理实现
人工智能·深度学习
mit6.82411 小时前
[RestGPT] docs | RestBench评估 | 配置与环境
人工智能·python
CareyWYR11 小时前
每周AI论文速递(250818-250822)
人工智能