长短期记忆(LSTM)与RNN的比较:突破性的序列训练技术

长短期记忆(Long short-term memory, LSTM)是一种特殊的RNN,主要是为了解决长序列训练过程中的梯度消失和梯度爆炸问题。简单来说,就是相比普通的RNN,LSTM能够在更长的序列中有更好的表现。

Why

LSTM提出的动机是为了解决**「长期依赖问题」**。

长期依赖(Long Term Dependencies)

在深度学习领域中(尤其是RNN),"长期依赖"问题是普遍存在的。长期依赖产生的原因是当神经网络的节点经过许多阶段的计算后,之前比较长的时间片的特征已经被覆盖,例如下面例子

eg1: The cat, which already ate a bunch of food, was full.
      |   |     |      |     |  |   |   |   |     |   |
     t0  t1    t2      t3    t4 t5  t6  t7  t8    t9 t10
eg2: The cats, which already ate a bunch of food, were full.
      |   |      |      |     |  |   |   |   |     |    |
     t0  t1     t2     t3    t4 t5  t6  t7  t8    t9   t10

我们想预测'full'之前系动词的单复数情况,显然full是取决于第二个单词'cat'的单复数情况,而非其前面的单词food。根据RNN的结构,随着数据时间片的增加,RNN丧失了学习连接如此远的信息的能力。

LSTM vs. RNN

相比RNN只有一个传递状态 ,LSTM有两个传输状态,一个 (cell state),和一个 (hidden state)。(Tips:RNN中的 对于LSTM中的 )

其中对于传递下去的 改变得很慢,通常输出的 是上一个状态传过来的 加上一些数值。

而 则在不同节点下往往会有很大的区别。

Model 详解

状态计算

首先使用LSTM的当前输入 和上一个状态传递下来的 拼接训练得到四个状态。

其中, , , 是由拼接向量乘以权重矩阵之后,再通过一个 激活函数转换成0到1之间的数值,来作为一种门控状态。而 则是将结果通过一个 激活函数将转换成-1到1之间的值(这里使用 是因为这里是将其做为输入数据,而不是门控信号)。

计算过程

⊙ 是Hadamard Product,也就是操作矩阵中对应的元素相乘,因此要求两个相乘矩阵是同型的。 ⊕ 则代表进行矩阵加法。

LSTM内部主要有三个阶段:

  1. 「忘记阶段」 。这个阶段主要是对上一个节点传进来的输入进行 **「选择性」**忘记。简单来说就是会 "忘记不重要的,记住重要的"。

具体来说是通过计算得到的 (f表示forget)来作为忘记门控,来控制上一个状态的 哪些需要留哪些需要忘。

  1. 「选择记忆阶段」 。这个阶段将这个阶段的输入有选择性地进行"记忆"。主要是会对输入 进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。当前的输入内容由前面计算得到的 表示。而选择的门控信号则是由 (i代表information)来进行控制。

将上面两步得到的结果相加,即可得到传输给下一个状态的 。也就是上图中的第一个公式。

  1. 「输出阶段」 。这个阶段将决定哪些将会被当成当前状态的输出。主要是通过 来进行控制的。并且还对上一阶段得到的 进行了放缩(通过一个tanh激活函数进行变化)。

与普通RNN类似,输出 往往最终也是通过 变化得到。

Code

现在,我们从零开始实现长短期记忆网络。 与 8.5节中的实验相同, 我们首先加载时光机器数据集。

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
  • 初始化模型参数

定义和初始化模型参数。 如前所述,超参数num_hiddens定义隐藏单元的数量。 我们按照标准差0.01的高斯分布初始化权重,并将偏置项设为0。

def get_lstm_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xi, W_hi, b_i = three()  # 输入门参数
    W_xf, W_hf, b_f = three()  # 遗忘门参数
    W_xo, W_ho, b_o = three()  # 输出门参数
    W_xc, W_hc, b_c = three()  # 候选记忆元参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc,
              b_c, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params
  • 定义模型

    def init_lstm_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device),
    torch.zeros((batch_size, num_hiddens), device=device))

    def lstm(inputs, state, params):
    [W_xi, W_hi, b_i, W_xf, W_hf, b_f, W_xo, W_ho, b_o, W_xc, W_hc, b_c,
    W_hq, b_q] = params
    (H, C) = state
    outputs = []
    for X in inputs:
    I = torch.sigmoid((X @ W_xi) + (H @ W_hi) + b_i)
    F = torch.sigmoid((X @ W_xf) + (H @ W_hf) + b_f)
    O = torch.sigmoid((X @ W_xo) + (H @ W_ho) + b_o)
    C_tilda = torch.tanh((X @ W_xc) + (H @ W_hc) + b_c)
    C = F * C + I * C_tilda
    H = O * torch.tanh(C)
    Y = (H @ W_hq) + b_q
    outputs.append(Y)
    return torch.cat(outputs, dim=0), (H, C)

  • 训练和预测

    vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
    num_epochs, lr = 500, 1
    model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_lstm_params,
    init_lstm_state, lstm)
    d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)

    perplexity 1.3, 17736.0 tokens/sec on cuda:0

    time traveller for so it will leong go it we melenot ir cove i s

    traveller care be can so i ngrecpely as along the time dime

总结

  • 长短期记忆网络有三种类型的门:输入门、遗忘门和输出门。
  • 长短期记忆网络的隐藏层输出包括"隐状态"和"记忆元"。只有隐状态会传递到输出层,而记忆元完全属于内部信息。
  • 长短期记忆网络可以缓解梯度消失和梯度爆炸。

Ref

  1. https://zhuanlan.zhihu.com/p/32085405
  2. https://zhuanlan.zhihu.com/p/42717426
  3. https://zh.d2l.ai/chapter_recurrent-modern/lstm.html

本文由mdnice多平台发布

相关推荐
zmjia1115 小时前
AI大语言模型进阶应用及模型优化、本地化部署、从0-1搭建、智能体构建技术
人工智能·语言模型·自然语言处理
sp_fyf_20246 小时前
计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-10-02
人工智能·神经网络·算法·计算机视觉·语言模型·自然语言处理·数据挖掘
新缸中之脑6 小时前
Ollama 运行视觉语言模型LLaVA
人工智能·语言模型·自然语言处理
龙的爹23338 小时前
论文 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust
人工智能·gpt·深度学习·语言模型·自然语言处理·prompt
湘大小菜鸡9 小时前
NLP进阶(一)
人工智能·自然语言处理
哪 吒10 小时前
吊打ChatGPT4o!大学生如何用上原版O1辅助论文写作(附论文教程)
人工智能·ai·自然语言处理·chatgpt·aigc
代码骑士10 小时前
【一起学NLP】Chapter3-使用神经网络解决问题
python·神经网络·自然语言处理
Langchain11 小时前
不可错过!CMU最新《生成式人工智能大模型》课程:从文本、图像到多模态大模型
人工智能·自然语言处理·langchain·大模型·llm·大语言模型·多模态大模型
龙的爹233311 小时前
论文翻译 | Generated Knowledge Prompting for Commonsense Reasoning
人工智能·gpt·机器学习·语言模型·自然语言处理·nlp·prompt
龙的爹233311 小时前
论文翻译 | Model-tuning Via Prompts Makes NLP Models Adversarially Robust
人工智能·gpt·语言模型·自然语言处理·nlp·prompt