【GAN】数据增强基础知识

最近要用到,但是一点基础都没有,故开个文章记录一下笔记

目录

GAN

DCGAN

WGAN

EEGGAN


GAN

参考

生成对抗网络(GAN) - 知乎 (zhihu.com)

文章

[1406.2661] Generative Adversarial Networks (arxiv.org)

代码

GitHub - yfeng95/GAN: Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

GAN是属于机器学习中generative中的implicit model的一种。

Generative体现在:GAN并不能计算数据真实分布的公式,也就是不能计算概率,但它能根据学习到的数据真实分布来生成一个样本

implicit体现在:它的模型是通过网络层实现的,并不是一个确定的数学公式,好比高斯分布等。

VAE,GAN这些生成模型终极目标是模拟数据的真实分布,模拟的好坏自然得有个测距公式来计算:

  • VAE里面是用KL divegence来计算两个分布的距离。
  • GAN里面可以理解成是用Jessen-Shannon divegence来计算两个分布的距离。

我们常说GAN是一个min-max训练过程,所谓的max其实是对应着鉴别网络,目的是为了训练鉴别网络让其等同于最优JS divence的作用,然后在这个最优的测距网络下,min生成网络。

DCGAN

文章

arxiv.org/pdf/1511.06434.pdf

WGAN

参考

令人拍案叫绝的Wasserstein GAN - 知乎 (zhihu.com)

文章

[1701.04862] Towards Principled Methods for Training Generative Adversarial Networks (arxiv.org)[1701.07875] Wasserstein GAN (arxiv.org)

代码

GitHub - martinarjovsky/WassersteinGAN

现在要说到WS-GAN了,它的最大贡献是(个人观点)指出了KL,JS等这些测距工具都有一个缺点,那就是不连续性,意思就是两个分布的差距是跳跃的,不是连续的,这就导致训练鉴别网络时很不稳定,然后作者提出了WS divegence这个测距工具,WS算出来的两个分布的差距是连续的, 用它来代替鉴别网络(撤换掉sigmoid等),因为是连续,所以训练的时候你可以很清晰的看到鉴别网络的loss是逐步的减小,整个训练过程稳定下来了。

EEGGAN

相关推荐
It's now10 分钟前
Spring AI 基础开发流程
java·人工智能·后端·spring
Glad_R17 分钟前
巧用AI流程图,让信息呈现更全面
人工智能·信息可视化·产品运营·流程图·产品经理
西南胶带の池上桜1 小时前
1.Pytorch模型应用(线性与非线性预测)
人工智能·pytorch·python
杀生丸学AI1 小时前
【无标题】VGGT4D:用于4D场景重建的视觉Transformer运动线索挖掘
人工智能·深度学习·3d·aigc·transformer·三维重建·视觉大模型
小和尚同志1 小时前
还在手动配置?这款开源软件让你一键配置 Claude Code 和 Codex
人工智能·aigc
阿正的梦工坊1 小时前
ProRL:延长强化学习训练,扩展大语言模型推理边界——NeurIPS 2025论文解读
人工智能·语言模型·自然语言处理
致Great1 小时前
Ollama 进阶指南
人工智能·gpt·chatgpt·agent·智能体
Nautiluss2 小时前
一起玩XVF3800麦克风阵列(八)
大数据·人工智能·嵌入式硬件·github·音频·语音识别
yzx9910132 小时前
人工智能大模型新浪潮:五大突破性工具深度解析
人工智能