【GAN】数据增强基础知识

最近要用到,但是一点基础都没有,故开个文章记录一下笔记

目录

GAN

DCGAN

WGAN

EEGGAN


GAN

参考

生成对抗网络(GAN) - 知乎 (zhihu.com)

文章

[1406.2661] Generative Adversarial Networks (arxiv.org)

代码

GitHub - yfeng95/GAN: Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

GAN是属于机器学习中generative中的implicit model的一种。

Generative体现在:GAN并不能计算数据真实分布的公式,也就是不能计算概率,但它能根据学习到的数据真实分布来生成一个样本

implicit体现在:它的模型是通过网络层实现的,并不是一个确定的数学公式,好比高斯分布等。

VAE,GAN这些生成模型终极目标是模拟数据的真实分布,模拟的好坏自然得有个测距公式来计算:

  • VAE里面是用KL divegence来计算两个分布的距离。
  • GAN里面可以理解成是用Jessen-Shannon divegence来计算两个分布的距离。

我们常说GAN是一个min-max训练过程,所谓的max其实是对应着鉴别网络,目的是为了训练鉴别网络让其等同于最优JS divence的作用,然后在这个最优的测距网络下,min生成网络。

DCGAN

文章

arxiv.org/pdf/1511.06434.pdf

WGAN

参考

令人拍案叫绝的Wasserstein GAN - 知乎 (zhihu.com)

文章

[1701.04862] Towards Principled Methods for Training Generative Adversarial Networks (arxiv.org)[1701.07875] Wasserstein GAN (arxiv.org)

代码

GitHub - martinarjovsky/WassersteinGAN

现在要说到WS-GAN了,它的最大贡献是(个人观点)指出了KL,JS等这些测距工具都有一个缺点,那就是不连续性,意思就是两个分布的差距是跳跃的,不是连续的,这就导致训练鉴别网络时很不稳定,然后作者提出了WS divegence这个测距工具,WS算出来的两个分布的差距是连续的, 用它来代替鉴别网络(撤换掉sigmoid等),因为是连续,所以训练的时候你可以很清晰的看到鉴别网络的loss是逐步的减小,整个训练过程稳定下来了。

EEGGAN

相关推荐
CoovallyAIHub12 小时前
顶刊新发!上海交大提出PreCM:即插即用的旋转等变卷积,显著提升分割模型鲁棒性
人工智能·算法·计算机视觉
Francek Chen12 小时前
【深度学习计算机视觉】12:风格迁移
人工智能·pytorch·深度学习·计算机视觉·风格迁移
拓端研究室12 小时前
专题:2025年AI Agent智能体行业价值及应用分析报告:核心趋势、经济影响与治理框架|附700+份报告PDF、数据仪表盘汇总下载
人工智能
2501_9307992412 小时前
访答个人知识库,浏览器。Al编辑器,云知识库,RAG,企业知识库,本地知识库,访答编辑器,云知识库,私有知识库,Pdf转Word,……
人工智能
猫头虎12 小时前
OpenAI发布构建AI智能体的实践指南:实用框架、设计模式与最佳实践解析
人工智能·设计模式·开源·aigc·交互·pip·ai-native
jie*12 小时前
小杰深度学习(seventeen)——视觉-经典神经网络——MObileNetV3
人工智能·python·深度学习·神经网络·numpy·matplotlib
好奇龙猫12 小时前
【学习AI-相关路程-mnist手写数字分类-一段学习的结束:自我学习AI-复盘-代码-了解原理-综述(5) 】
人工智能·学习·分类
A-大程序员12 小时前
【Pytorch】分类问题交叉熵
人工智能·pytorch·分类
一车小面包12 小时前
基于bert-base-chinese的外卖评论情绪分类项目
人工智能·机器学习
wu_jing_sheng012 小时前
ai 作物分类
人工智能·分类·数据挖掘