【GAN】数据增强基础知识

最近要用到,但是一点基础都没有,故开个文章记录一下笔记

目录

GAN

DCGAN

WGAN

EEGGAN


GAN

参考

生成对抗网络(GAN) - 知乎 (zhihu.com)

文章

[1406.2661] Generative Adversarial Networks (arxiv.org)

代码

GitHub - yfeng95/GAN: Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

GAN是属于机器学习中generative中的implicit model的一种。

Generative体现在:GAN并不能计算数据真实分布的公式,也就是不能计算概率,但它能根据学习到的数据真实分布来生成一个样本

implicit体现在:它的模型是通过网络层实现的,并不是一个确定的数学公式,好比高斯分布等。

VAE,GAN这些生成模型终极目标是模拟数据的真实分布,模拟的好坏自然得有个测距公式来计算:

  • VAE里面是用KL divegence来计算两个分布的距离。
  • GAN里面可以理解成是用Jessen-Shannon divegence来计算两个分布的距离。

我们常说GAN是一个min-max训练过程,所谓的max其实是对应着鉴别网络,目的是为了训练鉴别网络让其等同于最优JS divence的作用,然后在这个最优的测距网络下,min生成网络。

DCGAN

文章

arxiv.org/pdf/1511.06434.pdf

WGAN

参考

令人拍案叫绝的Wasserstein GAN - 知乎 (zhihu.com)

文章

[1701.04862] Towards Principled Methods for Training Generative Adversarial Networks (arxiv.org)[1701.07875] Wasserstein GAN (arxiv.org)

代码

GitHub - martinarjovsky/WassersteinGAN

现在要说到WS-GAN了,它的最大贡献是(个人观点)指出了KL,JS等这些测距工具都有一个缺点,那就是不连续性,意思就是两个分布的差距是跳跃的,不是连续的,这就导致训练鉴别网络时很不稳定,然后作者提出了WS divegence这个测距工具,WS算出来的两个分布的差距是连续的, 用它来代替鉴别网络(撤换掉sigmoid等),因为是连续,所以训练的时候你可以很清晰的看到鉴别网络的loss是逐步的减小,整个训练过程稳定下来了。

EEGGAN

相关推荐
羑悻的小杀马特16 分钟前
OpenCV 引擎:驱动实时应用开发的科技狂飙
人工智能·科技·opencv·计算机视觉
guanshiyishi3 小时前
ABeam 德硕 | 中国汽车市场(2)——新能源车的崛起与中国汽车市场机遇与挑战
人工智能
极客天成ScaleFlash4 小时前
极客天成NVFile:无缓存直击存储性能天花板,重新定义AI时代并行存储新范式
人工智能·缓存
澳鹏Appen5 小时前
AI安全:构建负责任且可靠的系统
人工智能·安全
蹦蹦跳跳真可爱5895 小时前
Python----机器学习(KNN:使用数学方法实现KNN)
人工智能·python·机器学习
视界宝藏库6 小时前
多元 AI 配音软件,打造独特音频体验
人工智能
xinxiyinhe6 小时前
GitHub上英语学习工具的精选分类汇总
人工智能·deepseek·学习英语精选
Start_Present6 小时前
Pytorch 第十二回:循环神经网络——LSTM模型
pytorch·rnn·神经网络·数据分析·lstm
ZStack开发者社区7 小时前
全球化2.0 | ZStack举办香港Partner Day,推动AIOS智塔+DeepSeek海外实践
人工智能·云计算
Spcarrydoinb8 小时前
基于yolo11的BGA图像目标检测
人工智能·目标检测·计算机视觉