【GAN】数据增强基础知识

最近要用到,但是一点基础都没有,故开个文章记录一下笔记

目录

GAN

DCGAN

WGAN

EEGGAN


GAN

参考

生成对抗网络(GAN) - 知乎 (zhihu.com)

文章

[1406.2661] Generative Adversarial Networks (arxiv.org)

代码

GitHub - yfeng95/GAN: Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

GAN是属于机器学习中generative中的implicit model的一种。

Generative体现在:GAN并不能计算数据真实分布的公式,也就是不能计算概率,但它能根据学习到的数据真实分布来生成一个样本

implicit体现在:它的模型是通过网络层实现的,并不是一个确定的数学公式,好比高斯分布等。

VAE,GAN这些生成模型终极目标是模拟数据的真实分布,模拟的好坏自然得有个测距公式来计算:

  • VAE里面是用KL divegence来计算两个分布的距离。
  • GAN里面可以理解成是用Jessen-Shannon divegence来计算两个分布的距离。

我们常说GAN是一个min-max训练过程,所谓的max其实是对应着鉴别网络,目的是为了训练鉴别网络让其等同于最优JS divence的作用,然后在这个最优的测距网络下,min生成网络。

DCGAN

文章

arxiv.org/pdf/1511.06434.pdf

WGAN

参考

令人拍案叫绝的Wasserstein GAN - 知乎 (zhihu.com)

文章

[1701.04862] Towards Principled Methods for Training Generative Adversarial Networks (arxiv.org)[1701.07875] Wasserstein GAN (arxiv.org)

代码

GitHub - martinarjovsky/WassersteinGAN

现在要说到WS-GAN了,它的最大贡献是(个人观点)指出了KL,JS等这些测距工具都有一个缺点,那就是不连续性,意思就是两个分布的差距是跳跃的,不是连续的,这就导致训练鉴别网络时很不稳定,然后作者提出了WS divegence这个测距工具,WS算出来的两个分布的差距是连续的, 用它来代替鉴别网络(撤换掉sigmoid等),因为是连续,所以训练的时候你可以很清晰的看到鉴别网络的loss是逐步的减小,整个训练过程稳定下来了。

EEGGAN

相关推荐
阿坡RPA7 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户27784491049937 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心8 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI10 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c10 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20511 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清11 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh11 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员11 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物12 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技