【GAN】数据增强基础知识

最近要用到,但是一点基础都没有,故开个文章记录一下笔记

目录

GAN

DCGAN

WGAN

EEGGAN


GAN

参考

生成对抗网络(GAN) - 知乎 (zhihu.com)

文章

[1406.2661] Generative Adversarial Networks (arxiv.org)

代码

GitHub - yfeng95/GAN: Resources and Implementations of Generative Adversarial Nets: GAN, DCGAN, WGAN, CGAN, InfoGAN

GAN是属于机器学习中generative中的implicit model的一种。

Generative体现在:GAN并不能计算数据真实分布的公式,也就是不能计算概率,但它能根据学习到的数据真实分布来生成一个样本

implicit体现在:它的模型是通过网络层实现的,并不是一个确定的数学公式,好比高斯分布等。

VAE,GAN这些生成模型终极目标是模拟数据的真实分布,模拟的好坏自然得有个测距公式来计算:

  • VAE里面是用KL divegence来计算两个分布的距离。
  • GAN里面可以理解成是用Jessen-Shannon divegence来计算两个分布的距离。

我们常说GAN是一个min-max训练过程,所谓的max其实是对应着鉴别网络,目的是为了训练鉴别网络让其等同于最优JS divence的作用,然后在这个最优的测距网络下,min生成网络。

DCGAN

文章

arxiv.org/pdf/1511.06434.pdf

WGAN

参考

令人拍案叫绝的Wasserstein GAN - 知乎 (zhihu.com)

文章

[1701.04862] Towards Principled Methods for Training Generative Adversarial Networks (arxiv.org)[1701.07875] Wasserstein GAN (arxiv.org)

代码

GitHub - martinarjovsky/WassersteinGAN

现在要说到WS-GAN了,它的最大贡献是(个人观点)指出了KL,JS等这些测距工具都有一个缺点,那就是不连续性,意思就是两个分布的差距是跳跃的,不是连续的,这就导致训练鉴别网络时很不稳定,然后作者提出了WS divegence这个测距工具,WS算出来的两个分布的差距是连续的, 用它来代替鉴别网络(撤换掉sigmoid等),因为是连续,所以训练的时候你可以很清晰的看到鉴别网络的loss是逐步的减小,整个训练过程稳定下来了。

EEGGAN

相关推荐
初九之潜龙勿用12 小时前
在openEuler操作系统基础上实现机器学习开发以及openEuler优势分析
人工智能·机器学习
秋刀鱼 ..12 小时前
【IEEE出版】第五届高性能计算、大数据与通信工程国际学术会议(ICHBC 2025)
大数据·人工智能·python·机器人·制造·新人首发
小王毕业啦12 小时前
2007-2024年 地级市-公共数据开放DID
大数据·人工智能·数据挖掘·数据分析·数据统计·社科数据·实证数据
飞Link13 小时前
【轻量拓展区】网络 QoS 与带宽、延迟、抖动:AI 推理的性能瓶颈
开发语言·网络·人工智能
南极星100513 小时前
OPENCV(python)--初学之路(十四)哈里斯角检测
人工智能·opencv·计算机视觉
咚咚王者13 小时前
人工智能之数据分析 Pandas:第九章 性能优化
人工智能·数据分析·pandas
Acrel1500035313813 小时前
重构能源管理:Acrel EMS 3.0 让降本增效成为底层逻辑
大数据·人工智能
dhdjjsjs13 小时前
Day31 PythonStudy
人工智能·机器学习
TextIn智能文档云平台13 小时前
深度学习在版面分析中的应用方法
人工智能·深度学习
金融小师妹13 小时前
黄金上探4260后基于阻力位识别模型回落,本周聚焦美联储决议的LSTM-NLP联合预测
大数据·人工智能·深度学习