Hive Lateral View explode列为空时导致数据异常丢失

一、问题描述

日常工作中我们经常会遇到一些非结构化数据,因此常常会将Lateral View 结合explode使用,达到将非结构化数据转化成结构化数据的目的,但是该方法对应explode的内容是有非null限制的,否则就有可能造成数据缺失。

sql 复制代码
SELECT name,info
FROM
  (
   SELECT name,
   	      split(info_list,',') as info_arrary
   FROM 
     (
      select '张三' as name,'1,2,3' as info_list
      union all
      select '李四' as name,null as info_list
     ) t1     -- 构造测试数据
   ) t2
LATERAL VIEW explode(t2.info_arrary) a as info ;

查询结果:

查看结果我们可以发现 '李四' 这条数据数据丢了,这就会造成我们最终统计的数据出现错误。

二、查找原因

通过定位我们可以发现 '李四' 这一行的info字段为null,其split之后的结果自然也是为null,通过LATERAL VIEW explode之后会形成一个为null的view,这样无法关联出数据,该数据就会丢失。

三、解决办法(建议使用方法二)

3.1 方法一

对子查询中的split结果强制使用coalesce()方法,将null替换成一个为['']的数组,直接这么写会误以为string字符串。我们可以使用split('','')构造出一个['']数组,改写后的语句如下

sql 复制代码
SELECT name,info
FROM
  (
   SELECT name,
          coalesce(split(info_list,','),split('','')) as info_arrary
   FROM 
     (
      select '张三' as name,'1,2,3' as info_list
      union all
      select '李四' as name,null as info_list
     ) t1     -- 构造测试数据
   ) t2
LATERAL VIEW OUTER explode(t2.info_arrary) a as info ;

请注意 '李四' 的结果为空字符,不是null。

3.2 方法二

使用官方提供的LATERAL VIEW OUTER来进行解决,该方法类似于left outer join,即如果explode出来的结果为null,也会保留记录,只不过对应字段为null,改写后的语句如下:

sql 复制代码
SELECT name,info
FROM
  (
   SELECT name,
          split(info_list,',') as info_arrary
   FROM 
     (
      select '张三' as name,'1,2,3' as info_list
      union all
      select '李四' as name,null as info_list
     ) t1     -- 构造测试数据
   ) t2
LATERAL VIEW OUTER explode(t2.info_arrary) a as info ;

查询结果:

请注意 '李四' 的结果为null,而不是空字符。

以下是官方文档关于该用法的解释:

The user can specify the optional OUTER keyword to generate rows even when a LATERAL VIEW usually would not generate a row. This happens when the UDTF used does not generate any rows which happens easily with explode when the column to explode is empty. In this case the source row would never appear in the results. OUTER can be used to prevent that and rows will be generated with NULL values in the columns coming from the UDTF.

为了保持代码的稳定性与数据的准确性,建议使用第二种方法。

相关推荐
一张假钞3 小时前
Spark SQL读写Hive Table部署
hive·sql·spark
想做富婆4 小时前
Hive:窗口函数[ntile, first_value,row_number() ,rank(),dens_rank()]和自定义函数
数据仓库·hive·hadoop
好记性+烂笔头10 小时前
4 Hadoop 面试真题
大数据·hadoop·面试
B站计算机毕业设计超人1 天前
计算机毕业设计Python+CNN卷积神经网络考研院校推荐系统 考研分数线预测 考研推荐系统 考研爬虫 考研大数据 Hadoop 大数据毕设 机器学习
hadoop·python·机器学习·spark·网络爬虫·课程设计·数据可视化
字节全栈_rJF1 天前
Hive 整合 Spark 全教程 (Hive on Spark)
hive·hadoop·spark
好记性+烂笔头2 天前
2 MapReduce
大数据·hadoop·mapreduce
字节全栈_ZKt2 天前
Hadoop集群中Hbase的介绍、安装、使用_root@master001 hadoop]# start-hbase
大数据·hadoop·hbase
一张假钞2 天前
Sqoop源码修改:增加落地HDFS文件数与MapTask数量一致性检查
java·hadoop·hdfs·sqoop
weixin_307779132 天前
设计转换Apache Hive的HQL语句为Snowflake SQL语句的Python程序方法
数据仓库·hive·python·sql
想做富婆2 天前
Hive:窗口函数(1)
数据仓库·hive·hadoop