斯坦福机器学习 Lecture1 (机器学习,监督学习、回归问题、分类问题定义)

https://www.bilibili.com/video/BV1JE411w7Ub?p=1\&vd_source=7a1a0bc74158c6993c7355c5490fc600

笔记如下

机器学习的定义:不需要明确编程就能让计算机去学习做某件事情

另一个定义

什么是监督学习?

给定一组 (x,y) 样本,学习一个 x->y 映射,接着用这个映射去预测新的 x 的 y,这就是监督学习

回归问题:要预测的 y 的值是连续的

分类问题:要预测的 y 的值是离散的

TODO:here

相关推荐
深圳佛手7 小时前
AI 编程工具Claude Code 介绍
人工智能·python·机器学习·langchain
koo3648 小时前
李宏毅机器学习笔记43
人工智能·笔记·机器学习
程序猿追9 小时前
轻量级云原生体验:在OpenEuler 25.09上快速部署单节点K3s
人工智能·科技·机器学习·unity·游戏引擎
程序猿追10 小时前
异腾910B NPU实战:vLLM模型深度测评与部署指南
运维·服务器·人工智能·机器学习·架构
antonytyler12 小时前
机器学习实践项目(二)- 房价预测增强篇 - 模型训练与评估:从多模型对比到小网格微调
人工智能·机器学习
星释18 小时前
Rust 练习册 :Phone Number与电话号码处理
开发语言·机器学习·rust
大大dxy大大1 天前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
武子康1 天前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
没有钱的钱仔1 天前
机器学习笔记
人工智能·笔记·机器学习
DP+GISer1 天前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习