Pytorch实现天气识别

目标

  1. 读取天气图片,按文件夹分类
  2. 搭建CNN网络,保存网络模型并加载模型
  3. 使用保存的模型预测真实天气

具体实现

(一)环境

语言环境 :Python 3.10 编 译 器: PyCharm 框 架: Pytorch 2.5.1

(二)具体步骤

1. 通用文件Utils.py
python 复制代码
import torch  
  
# 第一步:设置GPU  
def USE_GPU():  
    if torch.cuda.is_available():  
        print('CUDA is available, will use GPU')  
        device = torch.device("cuda")  
    else:  
        print('CUDA is not available. Will use CPU')  
        device = torch.device("cpu")  
  
    return device
2. 模型代码
ini 复制代码
import os  
  
from torchinfo import summary  
  
from Utils import USE_GPU  
import pathlib  
from PIL import Image  
import matplotlib.pyplot as plt  
import numpy as np  
import torch  
import torch.nn as nn  
import torchvision.transforms as transforms  
import torchvision  
from torchvision import datasets  
  
device = USE_GPU()  
  
# 导入数据  
data_dir = './data/weather_photos/'  
data_dir = pathlib.Path(data_dir)  
  
data_paths = list(data_dir.glob('*'))  
# print(data_paths)  
classNames = [str(path).split("\\")[2] for path in data_paths]  
print(classNames)  
  
# 查看一下图片  
image_folder = './data/weather_photos/cloudy'  
# 获取image_folder下的所有图片  
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]  
#创建matplotlib图像  
fig, axes = plt.subplots(3, 8, figsize=(16, 6))  
  
for ax, img_file in zip(axes.flat, image_files):  
    img_path = os.path.join(image_folder, img_file)  
    img = Image.open(img_path)  
    ax.imshow(img)  
    ax.axis('off')  
  
plt.tight_layout()  
plt.title(image_folder, loc='center')  
# plt.show()  

ini 复制代码
train_transforms = transforms.Compose([  
    transforms.Resize([224, 224]),  # 将输入图片统一resize成224大小  
    transforms.RandomHorizontalFlip(),  
    transforms.RandomVerticalFlip(),  
    transforms.ToTensor(),  
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
])  
  
total_data = datasets.ImageFolder(data_dir, transform=train_transforms)  
print(total_data)  
  
# 划分数据集  
train_size = int(0.8 * len(total_data))  
test_size = len(total_data) - train_size  
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])  
print(train_size, test_size)  
print(train_dataset, test_dataset)  
  
# 设置dataloader  
batch_size = 32  
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)  
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)  
  
for X, y in test_dl:  
    print("Shape of X [N, C, H, W]: ", X.shape)  
    print("Shape of y: ", y.shape, y.dtype)  
    break  
  
# 构建CNN网络  
import torch.nn.functional as F  
  
class Network_bn(nn.Module):  
    def __init__(self):  
        super(Network_bn, self).__init__()  
  
        self.conv1 = nn.Conv2d(3, 12, 5, 1, 0)  
        self.bn1 = nn.BatchNorm2d(12)  
        self.conv2 = nn.Conv2d(12, 12, 5, 1, 0)  
        self.bn2 = nn.BatchNorm2d(12)  
        self.pool1 = nn.MaxPool2d(2, 2)  
        self.conv4 = nn.Conv2d(12, 24, 5, 1, 0)  
        self.bn4 = nn.BatchNorm2d(24)  
        self.conv5 = nn.Conv2d(24, 24, 5, 1, 0)  
        self.bn5 = nn.BatchNorm2d(24)  
        self.pool2 = nn.MaxPool2d(2, 2)  
        self.fc1 = nn.Linear(24 * 50 * 50, len(classNames))  
  
    def forward(self, x):  
        x = F.relu(self.bn1(self.conv1(x)))  
        x = F.relu(self.bn2(self.conv2(x)))  
        x = self.pool1(x)  
        x = F.relu(self.bn4(self.conv4(x)))  
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)  
        x = x.view(-1, 24 * 50 * 50)  
        x = self.fc1(x)  
  
        return x  
  
model = Network_bn().to(device)  
print(model)  
summary(model)  

# 训练模型  
loss_fn = nn.CrossEntropyLoss()  
learn_rate = 1e-4  
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)  
  
# 循环训练  
def train(dataloader, model, loss_fn, optimizer):  
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)  
  
    train_loss, train_acc = 0, 0  
  
    for X, y in dataloader:  
        X, y = X.to(device), y.to(device)  
  
        pred = model(X)  
        loss = loss_fn(pred, y)  
  
        optimizer.zero_grad()  
        loss.backward()  
        optimizer.step()  
  
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()  
        train_loss += loss.item()  
  
    train_acc /= size  
    train_loss /= num_batches  
  
    return  train_acc,train_loss  
  
def test(dataloader, model, loss_fn):  
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)  
    test_loss, test_acc = 0, 0  
  
    with torch.no_grad():  
        for imgs, target in dataloader:  
            imgs, target = imgs.to(device), target.to(device)  
  
            target_pred = model(imgs)  
            loss = loss_fn(target_pred, target)  
  
            test_loss += loss.item()  
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()  
  
    test_acc /= size  
    test_loss /= num_batches  
  
    return test_acc, test_loss  
  
epochs = 25  
train_loss = []  
train_acc = []  
test_loss = []  
test_acc = []  
  
for epoch in range(epochs):  
    model.train()  
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)  
  
    model.eval()  
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)  
  
    train_acc.append(epoch_train_acc)  
    train_loss.append(epoch_train_loss)  
    test_acc.append(epoch_test_acc)  
    test_loss.append(epoch_test_loss)  
  
    template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}'  
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))  
print('Done')  
  
# 结果可视化  
import matplotlib.pyplot as plt  
#隐藏警告  
import warnings  
warnings.filterwarnings("ignore")               #忽略警告信息  
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签  
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号  
plt.rcParams['figure.dpi']         = 100        #分辨率  
  
epochs_range = range(epochs)  
  
plt.figure(figsize=(12, 3))  
plt.subplot(1, 2, 1)  
  
plt.plot(epochs_range, train_acc, label='Training Accuracy')  
plt.plot(epochs_range, test_acc, label='Test Accuracy')  
plt.legend(loc='lower right')  
plt.title('Training and Validation Accuracy')  
  
plt.subplot(1, 2, 2)  
plt.plot(epochs_range, train_loss, label='Training Loss')  
plt.plot(epochs_range, test_loss, label='Test Loss')  
plt.legend(loc='upper right')  
plt.title('Training and Validation Loss')  
plt.show()  
  
# 保存模型  
torch.save(model, "./models/cnn-weather.pth")
3. 预测真实图片:pred.py
ini 复制代码
from pydoc import classname  
  
from PIL import Image  
from matplotlib import pyplot as plt  
from torch import nn  
  
from Utils import USE_GPU  
import torch  
import  torchvision.transforms as transforms  
from torchvision import datasets  
import pathlib  
  
device = USE_GPU()  
  
# 构建CNN网络  
import torch.nn.functional as F  
  
class Network_bn(nn.Module):  
    def __init__(self):  
        super(Network_bn, self).__init__()  
  
        self.conv1 = nn.Conv2d(3, 12, 5, 1, 0)  
        self.bn1 = nn.BatchNorm2d(12)  
        self.conv2 = nn.Conv2d(12, 12, 5, 1, 0)  
        self.bn2 = nn.BatchNorm2d(12)  
        self.pool1 = nn.MaxPool2d(2, 2)  
        self.conv4 = nn.Conv2d(12, 24, 5, 1, 0)  
        self.bn4 = nn.BatchNorm2d(24)  
        self.conv5 = nn.Conv2d(24, 24, 5, 1, 0)  
        self.bn5 = nn.BatchNorm2d(24)  
        self.pool2 = nn.MaxPool2d(2, 2)  
        self.fc1 = nn.Linear(24 * 50 * 50, 4)  
  
    def forward(self, x):  
        x = F.relu(self.bn1(self.conv1(x)))  
        x = F.relu(self.bn2(self.conv2(x)))  
        x = self.pool1(x)  
        x = F.relu(self.bn4(self.conv4(x)))  
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)  
        x = x.view(-1, 24 * 50 * 50)  
        x = self.fc1(x)  
  
        return x  
  
model = torch.load('./models/cnn-weather.pth', weights_only=False)  
model.eval()  
  
transform = transforms.Compose([  
    transforms.Resize([224, 224]),  # 将输入图片统一resize成224大小  
    transforms.RandomHorizontalFlip(),  
    transforms.RandomVerticalFlip(),  
    transforms.ToTensor(),  
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
])  
  
className = ['cloudy', 'rain', 'shine', 'sunshine']  
  
# 导入数据  
weather_data_directory = './mydata/weather'  
weather_data_directory = pathlib.Path(weather_data_directory)  
print(weather_data_directory)  
image_count = len(list(weather_data_directory.glob('*.jpg')))  
print("待识别天气图片数量:", image_count)  
  
plt.figure(figsize=(5, 3))  
i = 0  
for path in weather_data_directory.glob('*.jpg'):  
    print(path) # 天气图片路径  
    image_source = Image.open(path)    # 打开图片转换成图片数据  
    image = transform(image_source)  
    image = image.unsqueeze(0)  # 增加维度  
    print(image.shape)  
    output = model(image.to(device))  
    pred = className[torch.argmax(output, dim=1).item()]  
    print(pred)  
  
    plt.subplot(2, 5, i+1)  
    plt.imshow(image_source)  
    plt.title(pred)  
    plt.xticks([])  
    plt.yticks([])  
  
    i += 1  
plt.show()

准确率80%.

(三)总结

下载一个大数据集训练一下,数据如下:

  • 晴天:10000张
  • 多云:10000张
  • 雨天:10000张
  • 大雪:10000张
  • 薄雾:10000张
  • 雷雨:10000张 经历漫长的几个小时训练,结果:
相关推荐
烟锁池塘柳028 分钟前
【深度学习】强化学习(Reinforcement Learning, RL)主流架构解析
人工智能·深度学习·机器学习
AI数据皮皮侠3 小时前
中国区域10m空间分辨率楼高数据集(全国/分省/分市/免费数据)
大数据·人工智能·机器学习·分类·业界资讯
Wilber的技术分享6 小时前
【机器学习实战笔记 14】集成学习:XGBoost算法(一) 原理简介与快速应用
人工智能·笔记·算法·随机森林·机器学习·集成学习·xgboost
19896 小时前
【零基础学AI】第26讲:循环神经网络(RNN)与LSTM - 文本生成
人工智能·python·rnn·神经网络·机器学习·tensorflow·lstm
JoernLee7 小时前
机器学习算法:支持向量机SVM
人工智能·算法·机器学习
IT古董14 小时前
【第二章:机器学习与神经网络概述】04.回归算法理论与实践 -(4)模型评价与调整(Model Evaluation & Tuning)
神经网络·机器学习·回归
蓝婷儿19 小时前
Python 机器学习核心入门与实战进阶 Day 3 - 决策树 & 随机森林模型实战
人工智能·python·机器学习
大千AI助手19 小时前
PageRank:互联网的马尔可夫链平衡态
人工智能·机器学习·贝叶斯·mc·pagerank·条件概率·马尔科夫链
我就是全世界20 小时前
TensorRT-LLM:大模型推理加速的核心技术与实践优势
人工智能·机器学习·性能优化·大模型·tensorrt-llm