Pytorch实现天气识别

目标

  1. 读取天气图片,按文件夹分类
  2. 搭建CNN网络,保存网络模型并加载模型
  3. 使用保存的模型预测真实天气

具体实现

(一)环境

语言环境 :Python 3.10 编 译 器: PyCharm 框 架: Pytorch 2.5.1

(二)具体步骤

1. 通用文件Utils.py
python 复制代码
import torch  
  
# 第一步:设置GPU  
def USE_GPU():  
    if torch.cuda.is_available():  
        print('CUDA is available, will use GPU')  
        device = torch.device("cuda")  
    else:  
        print('CUDA is not available. Will use CPU')  
        device = torch.device("cpu")  
  
    return device
2. 模型代码
ini 复制代码
import os  
  
from torchinfo import summary  
  
from Utils import USE_GPU  
import pathlib  
from PIL import Image  
import matplotlib.pyplot as plt  
import numpy as np  
import torch  
import torch.nn as nn  
import torchvision.transforms as transforms  
import torchvision  
from torchvision import datasets  
  
device = USE_GPU()  
  
# 导入数据  
data_dir = './data/weather_photos/'  
data_dir = pathlib.Path(data_dir)  
  
data_paths = list(data_dir.glob('*'))  
# print(data_paths)  
classNames = [str(path).split("\\")[2] for path in data_paths]  
print(classNames)  
  
# 查看一下图片  
image_folder = './data/weather_photos/cloudy'  
# 获取image_folder下的所有图片  
image_files = [f for f in os.listdir(image_folder) if f.endswith((".jpg", ".png", ".jpeg"))]  
#创建matplotlib图像  
fig, axes = plt.subplots(3, 8, figsize=(16, 6))  
  
for ax, img_file in zip(axes.flat, image_files):  
    img_path = os.path.join(image_folder, img_file)  
    img = Image.open(img_path)  
    ax.imshow(img)  
    ax.axis('off')  
  
plt.tight_layout()  
plt.title(image_folder, loc='center')  
# plt.show()  

ini 复制代码
train_transforms = transforms.Compose([  
    transforms.Resize([224, 224]),  # 将输入图片统一resize成224大小  
    transforms.RandomHorizontalFlip(),  
    transforms.RandomVerticalFlip(),  
    transforms.ToTensor(),  
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
])  
  
total_data = datasets.ImageFolder(data_dir, transform=train_transforms)  
print(total_data)  
  
# 划分数据集  
train_size = int(0.8 * len(total_data))  
test_size = len(total_data) - train_size  
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])  
print(train_size, test_size)  
print(train_dataset, test_dataset)  
  
# 设置dataloader  
batch_size = 32  
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)  
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=False)  
  
for X, y in test_dl:  
    print("Shape of X [N, C, H, W]: ", X.shape)  
    print("Shape of y: ", y.shape, y.dtype)  
    break  
  
# 构建CNN网络  
import torch.nn.functional as F  
  
class Network_bn(nn.Module):  
    def __init__(self):  
        super(Network_bn, self).__init__()  
  
        self.conv1 = nn.Conv2d(3, 12, 5, 1, 0)  
        self.bn1 = nn.BatchNorm2d(12)  
        self.conv2 = nn.Conv2d(12, 12, 5, 1, 0)  
        self.bn2 = nn.BatchNorm2d(12)  
        self.pool1 = nn.MaxPool2d(2, 2)  
        self.conv4 = nn.Conv2d(12, 24, 5, 1, 0)  
        self.bn4 = nn.BatchNorm2d(24)  
        self.conv5 = nn.Conv2d(24, 24, 5, 1, 0)  
        self.bn5 = nn.BatchNorm2d(24)  
        self.pool2 = nn.MaxPool2d(2, 2)  
        self.fc1 = nn.Linear(24 * 50 * 50, len(classNames))  
  
    def forward(self, x):  
        x = F.relu(self.bn1(self.conv1(x)))  
        x = F.relu(self.bn2(self.conv2(x)))  
        x = self.pool1(x)  
        x = F.relu(self.bn4(self.conv4(x)))  
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)  
        x = x.view(-1, 24 * 50 * 50)  
        x = self.fc1(x)  
  
        return x  
  
model = Network_bn().to(device)  
print(model)  
summary(model)  

# 训练模型  
loss_fn = nn.CrossEntropyLoss()  
learn_rate = 1e-4  
opt = torch.optim.SGD(model.parameters(), lr=learn_rate)  
  
# 循环训练  
def train(dataloader, model, loss_fn, optimizer):  
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)  
  
    train_loss, train_acc = 0, 0  
  
    for X, y in dataloader:  
        X, y = X.to(device), y.to(device)  
  
        pred = model(X)  
        loss = loss_fn(pred, y)  
  
        optimizer.zero_grad()  
        loss.backward()  
        optimizer.step()  
  
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()  
        train_loss += loss.item()  
  
    train_acc /= size  
    train_loss /= num_batches  
  
    return  train_acc,train_loss  
  
def test(dataloader, model, loss_fn):  
    size = len(dataloader.dataset)  
    num_batches = len(dataloader)  
    test_loss, test_acc = 0, 0  
  
    with torch.no_grad():  
        for imgs, target in dataloader:  
            imgs, target = imgs.to(device), target.to(device)  
  
            target_pred = model(imgs)  
            loss = loss_fn(target_pred, target)  
  
            test_loss += loss.item()  
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()  
  
    test_acc /= size  
    test_loss /= num_batches  
  
    return test_acc, test_loss  
  
epochs = 25  
train_loss = []  
train_acc = []  
test_loss = []  
test_acc = []  
  
for epoch in range(epochs):  
    model.train()  
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)  
  
    model.eval()  
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)  
  
    train_acc.append(epoch_train_acc)  
    train_loss.append(epoch_train_loss)  
    test_acc.append(epoch_test_acc)  
    test_loss.append(epoch_test_loss)  
  
    template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}'  
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))  
print('Done')  
  
# 结果可视化  
import matplotlib.pyplot as plt  
#隐藏警告  
import warnings  
warnings.filterwarnings("ignore")               #忽略警告信息  
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签  
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号  
plt.rcParams['figure.dpi']         = 100        #分辨率  
  
epochs_range = range(epochs)  
  
plt.figure(figsize=(12, 3))  
plt.subplot(1, 2, 1)  
  
plt.plot(epochs_range, train_acc, label='Training Accuracy')  
plt.plot(epochs_range, test_acc, label='Test Accuracy')  
plt.legend(loc='lower right')  
plt.title('Training and Validation Accuracy')  
  
plt.subplot(1, 2, 2)  
plt.plot(epochs_range, train_loss, label='Training Loss')  
plt.plot(epochs_range, test_loss, label='Test Loss')  
plt.legend(loc='upper right')  
plt.title('Training and Validation Loss')  
plt.show()  
  
# 保存模型  
torch.save(model, "./models/cnn-weather.pth")
3. 预测真实图片:pred.py
ini 复制代码
from pydoc import classname  
  
from PIL import Image  
from matplotlib import pyplot as plt  
from torch import nn  
  
from Utils import USE_GPU  
import torch  
import  torchvision.transforms as transforms  
from torchvision import datasets  
import pathlib  
  
device = USE_GPU()  
  
# 构建CNN网络  
import torch.nn.functional as F  
  
class Network_bn(nn.Module):  
    def __init__(self):  
        super(Network_bn, self).__init__()  
  
        self.conv1 = nn.Conv2d(3, 12, 5, 1, 0)  
        self.bn1 = nn.BatchNorm2d(12)  
        self.conv2 = nn.Conv2d(12, 12, 5, 1, 0)  
        self.bn2 = nn.BatchNorm2d(12)  
        self.pool1 = nn.MaxPool2d(2, 2)  
        self.conv4 = nn.Conv2d(12, 24, 5, 1, 0)  
        self.bn4 = nn.BatchNorm2d(24)  
        self.conv5 = nn.Conv2d(24, 24, 5, 1, 0)  
        self.bn5 = nn.BatchNorm2d(24)  
        self.pool2 = nn.MaxPool2d(2, 2)  
        self.fc1 = nn.Linear(24 * 50 * 50, 4)  
  
    def forward(self, x):  
        x = F.relu(self.bn1(self.conv1(x)))  
        x = F.relu(self.bn2(self.conv2(x)))  
        x = self.pool1(x)  
        x = F.relu(self.bn4(self.conv4(x)))  
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)  
        x = x.view(-1, 24 * 50 * 50)  
        x = self.fc1(x)  
  
        return x  
  
model = torch.load('./models/cnn-weather.pth', weights_only=False)  
model.eval()  
  
transform = transforms.Compose([  
    transforms.Resize([224, 224]),  # 将输入图片统一resize成224大小  
    transforms.RandomHorizontalFlip(),  
    transforms.RandomVerticalFlip(),  
    transforms.ToTensor(),  
    transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
])  
  
className = ['cloudy', 'rain', 'shine', 'sunshine']  
  
# 导入数据  
weather_data_directory = './mydata/weather'  
weather_data_directory = pathlib.Path(weather_data_directory)  
print(weather_data_directory)  
image_count = len(list(weather_data_directory.glob('*.jpg')))  
print("待识别天气图片数量:", image_count)  
  
plt.figure(figsize=(5, 3))  
i = 0  
for path in weather_data_directory.glob('*.jpg'):  
    print(path) # 天气图片路径  
    image_source = Image.open(path)    # 打开图片转换成图片数据  
    image = transform(image_source)  
    image = image.unsqueeze(0)  # 增加维度  
    print(image.shape)  
    output = model(image.to(device))  
    pred = className[torch.argmax(output, dim=1).item()]  
    print(pred)  
  
    plt.subplot(2, 5, i+1)  
    plt.imshow(image_source)  
    plt.title(pred)  
    plt.xticks([])  
    plt.yticks([])  
  
    i += 1  
plt.show()

准确率80%.

(三)总结

下载一个大数据集训练一下,数据如下:

  • 晴天:10000张
  • 多云:10000张
  • 雨天:10000张
  • 大雪:10000张
  • 薄雾:10000张
  • 雷雨:10000张 经历漫长的几个小时训练,结果:
相关推荐
Christo31 小时前
ICML-2019《Optimal Transport for structured data with application on graphs》
人工智能·算法·机器学习·数据挖掘
m0_488913012 小时前
Deep Research技术全解析:从Reasoning到Research with Reasoning的AI进化之路(值得收藏)
开发语言·人工智能·机器学习·大模型·ai大模型·大模型学习
猿类崛起@3 小时前
2025秋招LLM大模型多模态面试题:110道大模型面试常见问题及答案,助你拿下AI工程师岗位!
人工智能·机器学习·ai·性能优化·大模型·prompt·大模型训练
科学最TOP3 小时前
时间序列的“语言”:从语言模型视角理解时序基础模型
人工智能·深度学习·机器学习·时间序列
AI科技星4 小时前
自然本源——空间元、氢尺、探针与场方程
数据结构·人工智能·算法·机器学习·计算机视觉
DatGuy4 小时前
Week 27: 机器学习补遗:XGBoost
人工智能·机器学习
Yeats_Liao5 小时前
CANN Samples(七):视频与流媒体:RTSP与多路输入实战
人工智能·机器学习·音视频
B站计算机毕业设计之家5 小时前
Python+Flask 电商数据分析系统(Selenium爬虫+多元线性回归)商品数据采集分析可视化系统 实时监控 淘宝数据采集 大屏可视化 (附源码)✅
大数据·爬虫·python·selenium·机器学习·flask·线性回归
Salt_07285 小时前
DAY 22 常见的特征筛选算法
人工智能·python·机器学习
阿杰学AI5 小时前
AI核心知识25——大语言模型之RAG(简洁且通俗易懂版)
人工智能·机器学习·语言模型·自然语言处理·aigc·agi·rag