Canal+Kafka实现MySQL与Redis数据同步(二)

Canal+Kafka实现MySQL与Redis数据同步(二)

创建MQ消费者进行同步

在application.yml配置文件加上kafka的配置信息:

yml 复制代码
spring:
  kafka:
      # Kafka服务地址
    bootstrap-servers: 127.0.0.1:9092
    consumer:
      # 指定一个默认的组名
      group-id: consumer-group1
      #序列化反序列化
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.apache.kafka.common.serialization.StringDeserializer
    producer:
      key-serializer: org.apache.kafka.common.serialization.StringDeserializer
      value-serializer: org.apache.kafka.common.serialization.StringDeserializer
      # 批量抓取
      batch-size: 65536
      # 缓存容量
      buffer-memory: 524288

根据上面Kafka消费命令那里,我们知道了json数据的结构,可以创建一个CanalBean对象进行接收:

java 复制代码
public class CanalBean {
    //数据
    private List<TbCommodityInfo> data;
    //数据库名称
    private String database;
    private long es;
    //递增,从1开始
    private int id;
    //是否是DDL语句
    private boolean isDdl;
    //表结构的字段类型
    private MysqlType mysqlType;
    //UPDATE语句,旧数据
    private String old;
    //主键名称
    private List<String> pkNames;
    //sql语句
    private String sql;
    private SqlType sqlType;
    //表名
    private String table;
    private long ts;
    //(新增)INSERT、(更新)UPDATE、(删除)DELETE、(删除表)ERASE等等
    private String type;
    //getter、setter方法
}
public class MysqlType {
    private String id;
    private String commodity_name;
    private String commodity_price;
    private String number;
    private String description;
    //getter、setter方法
}
public class SqlType {
    private int id;
    private int commodity_name;
    private int commodity_price;
    private int number;
    private int description;
}

最后就可以创建一个消费者CanalConsumer进行消费:

java 复制代码
@Component
public class CanalConsumer {
    //日志记录
    private static Logger log = LoggerFactory.getLogger(CanalConsumer.class);
    //redis操作工具类
    @Resource
    private RedisClient redisClient;
    //监听的队列名称为:canaltopic
    @KafkaListener(topics = "canaltopic")
    public void receive(ConsumerRecord<?, ?> consumer) {
        String value = (String) consumer.value();
        log.info("topic名称:{},key:{},分区位置:{},下标:{},value:{}", consumer.topic(), consumer.key(),consumer.partition(), consumer.offset(), value);
        //转换为javaBean
        CanalBean canalBean = JSONObject.parseObject(value, CanalBean.class);
        //获取是否是DDL语句
        boolean isDdl = canalBean.getIsDdl();
        //获取类型
        String type = canalBean.getType();
        //不是DDL语句
        if (!isDdl) {
            List<TbCommodityInfo> tbCommodityInfos = canalBean.getData();
            //过期时间
            long TIME_OUT = 600L;
            if ("INSERT".equals(type)) {
                //新增语句
                for (TbCommodityInfo tbCommodityInfo : tbCommodityInfos) {
                    String id = tbCommodityInfo.getId();
                    //新增到redis中,过期时间是10分钟
                    redisClient.setString(id, JSONObject.toJSONString(tbCommodityInfo), TIME_OUT);
                }
            } else if ("UPDATE".equals(type)) {
                //更新语句
                for (TbCommodityInfo tbCommodityInfo : tbCommodityInfos) {
                    String id = tbCommodityInfo.getId();
                    //更新到redis中,过期时间是10分钟
                    redisClient.setString(id, JSONObject.toJSONString(tbCommodityInfo), TIME_OUT);
                }
            } else {
                //删除语句
                for (TbCommodityInfo tbCommodityInfo : tbCommodityInfos) {
                    String id = tbCommodityInfo.getId();
                    //从redis中删除
                    redisClient.deleteKey(id);
                }
            }
        }
    }
}

测试MySQL与Redis同步

mysql对应的表结构如下:

sql 复制代码
CREATE TABLE `tb_commodity_info` (
  `id` varchar(32) NOT NULL,
  `commodity_name` varchar(512) DEFAULT NULL COMMENT '商品名称',
  `commodity_price` varchar(36) DEFAULT '0' COMMENT '商品价格',
  `number` int(10) DEFAULT '0' COMMENT '商品数量',
  `description` varchar(2048) DEFAULT '' COMMENT '商品描述',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='商品信息表';

首先在MySQL创建表。然后启动项目,接着新增一条数据:

sql 复制代码
INSERT INTO `canaldb`.`tb_commodity_info` (`id`, `commodity_name`, `commodity_price`, `number`, `description`) VALUES ('3e71a81fd80711eaaed600163e046cc3', '叉包', '3.99', '3', '大叉包,老喜欢');

tb_commodity_info表查到新增的数据:

Redis也查到了对应的数据,证明同步成功!

如果更新呢?试一下Update语句:

sql 复制代码
UPDATE `canaldb`.`tb_commodity_info` SET `commodity_name`='青菜包',`description`='便宜的青菜包' WHERE `id`='3e71a81fd80711eaaed600163e046cc3';

没有问题!

总结

canal的缺点:

  1. canal只能同步增量数据。
  2. 不是实时同步,是准实时同步。
  3. 存在一些bug,不过社区活跃度较高,对于提出的bug能及时修复。
  4. MQ顺序性问题。
    网的回答,大家参考一下

尽管有一些缺点,毕竟没有一样技术(产品)是完美的,合适最重要。

相关推荐
小兜全糖(xdqt)23 分钟前
mysql数据同步到sql server
mysql·adb
Karoku06626 分钟前
【企业级分布式系统】Zabbix监控系统与部署安装
运维·服务器·数据库·redis·mysql·zabbix
gorgor在码农41 分钟前
Redis 热key总结
java·redis·热key
想进大厂的小王42 分钟前
项目架构介绍以及Spring cloud、redis、mq 等组件的基本认识
redis·分布式·后端·spring cloud·微服务·架构
Java 第一深情1 小时前
高性能分布式缓存Redis-数据管理与性能提升之道
redis·分布式·缓存
周全全1 小时前
MySQL报错解决:The user specified as a definer (‘root‘@‘%‘) does not exist
android·数据库·mysql
白云如幻1 小时前
MySQL的分组函数
数据库·mysql
杨荧2 小时前
【JAVA毕业设计】基于Vue和SpringBoot的服装商城系统学科竞赛管理系统
java·开发语言·vue.js·spring boot·spring cloud·java-ee·kafka
zmd-zk2 小时前
kafka+zookeeper的搭建
大数据·分布式·zookeeper·中间件·kafka
激流丶2 小时前
【Kafka 实战】如何解决Kafka Topic数量过多带来的性能问题?
java·大数据·kafka·topic