将一个无向图变成一个双联通图所需添加的最小边数

双联通图:就是一个图中任意两点之间都有两条不重合的路径相连。

桥:指的是强联通分量之间的边。

将一个无向图变成一个双联通图所需的最小边为:

首先将该图缩点,缩完点之后的图就是一个树,设该树的叶子节点为x;

所需边数:(x + 1)/ 2;

cpp 复制代码
int dfn[N], low[N], timestamp;
int stk[N], id[N], all[N];
bool in_stk[N];
int h[N], e[N], ne[N], idx;
int n, m, top, scc_cnt;
int du[N];
bool is_bridge[N];
inline void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void tarjan(int u, int from)
{
    // 记录序号以及初始化可以到达的最小标号点
    dfn[u] = low[u] = ++ timestamp;
    stk[++ top] = u;
    // 便利当前节点的所有节点
    for(int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if(!dfn[j]) // 该点未遍历
        {
            tarjan(j, i); // 便利子节点
            low[u] = min(low[u], low[j]); // 更新当前节点可以到达的最小序号点
            if(dfn[u] < low[j]) // 表明是一个桥 
				is_bridge[i] = is_bridge[i ^ 1] = 1; 
        }
        else if(i != (from ^ 1))
            low[u] = min(low[u], low[j]);
    }
    if(dfn[u] == low[u])
    {
        int y;
        ++ scc_cnt;
        do
        {
            y = stk[top --];
            id[y] = scc_cnt;
        }while(y != u);
    }
}
inline void sovle()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    while(m --){
        int a, b;
        cin >> a >> b;
        add(a, b);
        add(b, a);
    }
    tarjan(1, -1);
    for(int i = 0; i < idx; i ++)
    	if(is_bridge[i]) // 将该点的出度加一
    		du[id[e[i]]] ++;
	int s = 0;
	for(int i = 1; i <= scc_cnt; i ++)
		if(du[i] == 1) // 若是该点的出度为1,说明是一个叶子节点
			s ++;
    cout << (s + 1) / 2 << endl; 
}
相关推荐
Hcoco_me3 小时前
大模型面试题17:PCA算法详解及入门实操
算法
跨境卫士苏苏4 小时前
亚马逊AI广告革命:告别“猜心”,迎接“共创”时代
大数据·人工智能·算法·亚马逊·防关联
云雾J视界4 小时前
当算法试图解决一切:技术解决方案主义的诱惑与陷阱
算法·google·bert·transformer·attention·算法治理
Xの哲學4 小时前
Linux Miscdevice深度剖析:从原理到实战的完整指南
linux·服务器·算法·架构·边缘计算
夏乌_Wx5 小时前
练题100天——DAY23:存在重复元素Ⅰ Ⅱ+两数之和
数据结构·算法·leetcode
立志成为大牛的小牛5 小时前
数据结构——五十六、排序的基本概念(王道408)
开发语言·数据结构·程序人生·算法
沿着路走到底6 小时前
将数组倒序,不能采用reverse,算法复杂度最低
算法
IDIOT___IDIOT6 小时前
KNN and K-means 监督与非监督学习
学习·算法·kmeans
Hcoco_me6 小时前
大模型面试题18:t-SNE算法详解及入门实操
算法