将一个无向图变成一个双联通图所需添加的最小边数

双联通图:就是一个图中任意两点之间都有两条不重合的路径相连。

桥:指的是强联通分量之间的边。

将一个无向图变成一个双联通图所需的最小边为:

首先将该图缩点,缩完点之后的图就是一个树,设该树的叶子节点为x;

所需边数:(x + 1)/ 2;

cpp 复制代码
int dfn[N], low[N], timestamp;
int stk[N], id[N], all[N];
bool in_stk[N];
int h[N], e[N], ne[N], idx;
int n, m, top, scc_cnt;
int du[N];
bool is_bridge[N];
inline void add(int a, int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void tarjan(int u, int from)
{
    // 记录序号以及初始化可以到达的最小标号点
    dfn[u] = low[u] = ++ timestamp;
    stk[++ top] = u;
    // 便利当前节点的所有节点
    for(int i = h[u]; ~i; i = ne[i])
    {
        int j = e[i];
        if(!dfn[j]) // 该点未遍历
        {
            tarjan(j, i); // 便利子节点
            low[u] = min(low[u], low[j]); // 更新当前节点可以到达的最小序号点
            if(dfn[u] < low[j]) // 表明是一个桥 
				is_bridge[i] = is_bridge[i ^ 1] = 1; 
        }
        else if(i != (from ^ 1))
            low[u] = min(low[u], low[j]);
    }
    if(dfn[u] == low[u])
    {
        int y;
        ++ scc_cnt;
        do
        {
            y = stk[top --];
            id[y] = scc_cnt;
        }while(y != u);
    }
}
inline void sovle()
{
    cin >> n >> m;
    memset(h, -1, sizeof h);
    while(m --){
        int a, b;
        cin >> a >> b;
        add(a, b);
        add(b, a);
    }
    tarjan(1, -1);
    for(int i = 0; i < idx; i ++)
    	if(is_bridge[i]) // 将该点的出度加一
    		du[id[e[i]]] ++;
	int s = 0;
	for(int i = 1; i <= scc_cnt; i ++)
		if(du[i] == 1) // 若是该点的出度为1,说明是一个叶子节点
			s ++;
    cout << (s + 1) / 2 << endl; 
}
相关推荐
曦月逸霜25 分钟前
第34次CCF-CSP认证真题解析(目标300分做法)
数据结构·c++·算法
海的诗篇_2 小时前
移除元素-JavaScript【算法学习day.04】
javascript·学习·算法
自动驾驶小卡2 小时前
A*算法实现原理以及实现步骤(C++)
算法
Unpredictable2222 小时前
【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
c++·笔记·算法·ubuntu·计算机视觉
编程绿豆侠2 小时前
力扣HOT100之多维动态规划:1143. 最长公共子序列
算法·leetcode·动态规划
珂朵莉MM2 小时前
2021 RoboCom 世界机器人开发者大赛-高职组(初赛)解题报告 | 珂学家
java·开发语言·人工智能·算法·职场和发展·机器人
fail_to_code3 小时前
递归法的递归函数何时需要返回值
算法
C137的本贾尼3 小时前
(每日一道算法题)二叉树剪枝
算法·机器学习·剪枝
BUG收容所所长5 小时前
栈的奇妙世界:从冰棒到算法的华丽转身
前端·javascript·算法