【EM算法】三硬币模型

【EM算法】算法及注解
三硬币模型是EM算法运用的一个经典例子
EM算法:

1.选择初值

2.E步求期望

3.M步求极大

4.迭代至收敛

目录

三硬币模型

极大似然估计方法

EM方法


三硬币模型

3枚硬币分别记作A、B、C,这些硬币正面出现的概率分别是。进行如下掷硬币试验:先掷硬币 A,根据其结果选出硬币B 或硬币C,正面选硬币B,反面选硬币C;然后掷选出的硬币,掷硬币的结果,出现正面记作1,出现反面记作0;独立地重复n次试验(这里取n= 10),观测结果为:{1,1,0,1,0,0,1,0,1,1}

假设只能观测到掷硬币的结果,不能观测掷硬币的过程。问如何估计参数

目的是估计模型参数,自然地考量到极大似然估计方法

极大似然估计方法

三硬币模型可以写作:

:观测变量,表示一次试验观测的结果是 1 或 0

:隐变量(不可观测变量),表示未观测到的掷硬币 A 的结果

:模型参数

将观测数据表示为,未观测数据表示为则观测数据的似然函数为

展开得

考虑求模型参数的极大似然估计,即

实际上,这个问题没有解析解,只有通过迭代的方法求解。EM 算法就是可以用于求解这个问题的一种迭代算法。换句话说,EM算法是求解含有隐变量的概率模型参数的极大似然估计法。

EM方法

首先选取参数的初值,记作

然后通过E步和M步迭代计算参数的估计值。第次迭代参数的估计值为。EM 算法的第次迭代如下:

E 步:计算在模型参数 下观测数据来自掷硬币 B 的概率

M 步:计算模型参数的新估计值


进行数值计算。假设模型参数的初值取为

依据E步公式,对均有

依据M步公式, 得到

再依据E步公式,得到

再依据M步公式, 得到

两次迭代结果一致,这时已经满足收敛条件

于是得到模型参数的极大似然估计

表示硬币 A 是均匀的,这一结果容易理解
EM算法对初值敏感:

如果取初值, 那么得到的模型参数的极大似然估计是

相关推荐
小陈又菜4 分钟前
【计算机网络】网络层知识体系全解:从基础概念到路由协议
服务器·人工智能·计算机网络·机器学习·智能路由器
Swift社区8 分钟前
LeetCode 453 - 最小操作次数使数组元素相等
算法·leetcode·职场和发展
渡我白衣11 分钟前
计算机组成原理(8):各种码的作用详解
c++·人工智能·深度学习·神经网络·其他·机器学习
黑客思维者12 分钟前
机器学习016:监督学习【分类算法】(支持向量机)-- “分类大师”入门指南
人工智能·学习·机器学习·支持向量机·分类·回归·监督学习
hoiii18713 分钟前
LR算法辅助的MIMO系统Zero Forcing检测
算法
糖葫芦君15 分钟前
Lora模型微调
人工智能·算法
Blossom.11819 分钟前
多模态大模型实战:从零实现CLIP与电商跨模态检索系统
python·web安全·yolo·目标检测·机器学习·目标跟踪·开源软件
小李小李快乐不已24 分钟前
二叉树理论基础
数据结构·c++·算法·leetcode
Felaim25 分钟前
【自动驾驶】SparseWorld-TC 论文总结(理想)
人工智能·机器学习·自动驾驶
仰泳的熊猫28 分钟前
1149 Dangerous Goods Packaging
数据结构·c++·算法·pat考试