【EM算法】三硬币模型

【EM算法】算法及注解
三硬币模型是EM算法运用的一个经典例子
EM算法:

1.选择初值

2.E步求期望

3.M步求极大

4.迭代至收敛

目录

三硬币模型

极大似然估计方法

EM方法


三硬币模型

3枚硬币分别记作A、B、C,这些硬币正面出现的概率分别是。进行如下掷硬币试验:先掷硬币 A,根据其结果选出硬币B 或硬币C,正面选硬币B,反面选硬币C;然后掷选出的硬币,掷硬币的结果,出现正面记作1,出现反面记作0;独立地重复n次试验(这里取n= 10),观测结果为:{1,1,0,1,0,0,1,0,1,1}

假设只能观测到掷硬币的结果,不能观测掷硬币的过程。问如何估计参数

目的是估计模型参数,自然地考量到极大似然估计方法

极大似然估计方法

三硬币模型可以写作:

:观测变量,表示一次试验观测的结果是 1 或 0

:隐变量(不可观测变量),表示未观测到的掷硬币 A 的结果

:模型参数

将观测数据表示为,未观测数据表示为则观测数据的似然函数为

展开得

考虑求模型参数的极大似然估计,即

实际上,这个问题没有解析解,只有通过迭代的方法求解。EM 算法就是可以用于求解这个问题的一种迭代算法。换句话说,EM算法是求解含有隐变量的概率模型参数的极大似然估计法。

EM方法

首先选取参数的初值,记作

然后通过E步和M步迭代计算参数的估计值。第次迭代参数的估计值为。EM 算法的第次迭代如下:

E 步:计算在模型参数 下观测数据来自掷硬币 B 的概率

M 步:计算模型参数的新估计值


进行数值计算。假设模型参数的初值取为

依据E步公式,对均有

依据M步公式, 得到

再依据E步公式,得到

再依据M步公式, 得到

两次迭代结果一致,这时已经满足收敛条件

于是得到模型参数的极大似然估计

表示硬币 A 是均匀的,这一结果容易理解
EM算法对初值敏感:

如果取初值, 那么得到的模型参数的极大似然估计是

相关推荐
_殊途9 分钟前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
橡晟2 小时前
深度学习入门:让神经网络变得“深不可测“⚡(二)
人工智能·python·深度学习·机器学习·计算机视觉
墨尘游子2 小时前
神经网络的层与块
人工智能·python·深度学习·机器学习
Leah01053 小时前
机器学习、深度学习、神经网络之间的关系
深度学习·神经网络·机器学习·ai
珊瑚里的鱼4 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
秋说5 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法
lifallen5 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove5 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
九章云极AladdinEdu6 小时前
摩尔线程MUSA架构深度调优指南:从CUDA到MUSA的显存访问模式重构原则
人工智能·pytorch·深度学习·机器学习·语言模型·tensorflow·gpu算力
python_tty6 小时前
排序算法(二):插入排序
算法·排序算法