激发创新,助力研究:CogVLM,强大且开源的视觉语言模型亮相

激发创新,助力研究:CogVLM,强大且开源的视觉语言模型亮相

  • CogVLM 是一个强大的开源视觉语言模型(VLM)。CogVLM-17B 拥有 100 亿视觉参数和 70 亿语言参数。

  • CogVLM-17B 在 10 个经典跨模态基准测试上取得了 SOTA 性能,包括 NoCaps、Flicker30k captioning、RefCOCO、RefCOCO+、RefCOCOg、Visual7W、GQA、ScienceQA、VizWiz VQA 和 TDIUC,而在 VQAv2、OKVQA、TextVQA、COCO captioning 等方面则排名第二,超越或与 PaLI-X 55B 持平。您可以通过线上 demo 体验 CogVLM 多模态对话。

1.demo案例展示

  • CogVLM 能够准确地描述图像,几乎不会出现幻觉
    LLAVA-1.5 和 MiniGPT-4 的比较。
  • CogVLM 能理解和回答各种类型的问题,并有一个视觉定位 版本。

  • CogVLM 有时比 GPT-4V(ision) 提取到更多的细节信息。

2.快速使用

CogVLM 模型包括四个基本组件:视觉变换器(ViT)编码器、MLP适配器、预训练的大型语言模型(GPT)和一个视觉专家模块 。更多细节请参见论文

2.1入门指南

我们提供两种图形用户界面(GUI)进行模型推断,分别是网页演示命令行界面(CLI)。如果您想在Python代码中使用它,很容易修改CLI脚本以适应您的情况。

首先,需要安装依赖项。

bash 复制代码
pip install -r requirements.txt
python -m spacy download en_core_web_sm
  • 硬件要求
    • 模型推断:1 * A100(80G) 或 2 * RTX 3090(24G)。
    • 微调:4 * A100(80G) [推荐] 或 8 * RTX 3090(24G)。

2.2 网页演示

我们还提供基于Gradio的本地网页演示。首先,通过运行 pip install gradio 安装Gradio。然后下载并进入此仓库,运行 web_demo.py。具体使用方式如下:

bash 复制代码
python web_demo.py --from_pretrained cogvlm-chat --version chat --english --bf16
python web_demo.py --from_pretrained cogvlm-grounding-generalist --version base --english --bf16

网页演示的 GUI 界面如下:

2.3 CLI

我们开源了不同下游任务的模型权重:

  • cogvlm-chat 用于对齐的模型,在此之后支持像 GPT-4V 一样的聊天。
  • cogvlm-base-224 文本-图像预训练后的原始权重。
  • cogvlm-base-490 从 cogvlm-base-224 微调得到的 490px 分辨率版本。
  • cogvlm-grounding-generalist 这个权重支持不同的视觉定位任务,例如 REC、Grounding Captioning 等。

通过CLI演示,执行以下命令:

bash 复制代码
python cli_demo.py --from_pretrained cogvlm-base-224 --version base --english --bf16 --no_prompt
python cli_demo.py --from_pretrained cogvlm-base-490 --version base --english --bf16 --no_prompt
python cli_demo.py --from_pretrained cogvlm-chat --version chat --english --bf16
python cli_demo.py --from_pretrained cogvlm-grounding-generalist --version base --english --bf16

该程序会自动下载 sat 模型并在命令行中进行交互。您可以通过输入指令并按 Enter 生成回复。

输入 clear 可清除对话历史,输入 stop 可停止程序。

  • 参考链接

https://github.com/THUDM/CogVLM/tree/main

在 CogVLM 的指令微调阶段,使用了来自 MiniGPT-4LLAVALRV-InstructionLLaVARShikra 项目的一些英文图像-文本数据,

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

相关推荐
葫三生27 分钟前
如何评价《论三生原理》在科技界的地位?
人工智能·算法·机器学习·数学建模·量子计算
m0_751336392 小时前
突破性进展:超短等离子体脉冲实现单电子量子干涉,为飞行量子比特奠定基础
人工智能·深度学习·量子计算·材料科学·光子器件·光子学·无线电电子
美狐美颜sdk5 小时前
跨平台直播美颜SDK集成实录:Android/iOS如何适配贴纸功能
android·人工智能·ios·架构·音视频·美颜sdk·第三方美颜sdk
DeepSeek-大模型系统教程5 小时前
推荐 7 个本周 yyds 的 GitHub 项目。
人工智能·ai·语言模型·大模型·github·ai大模型·大模型学习
郭庆汝5 小时前
pytorch、torchvision与python版本对应关系
人工智能·pytorch·python
小雷FansUnion7 小时前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周7 小时前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享8 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜8 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿8 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程