利用OpenCV实现图片中导线的识别

下面是一个需求,识别图片中的导线,要在图像中检测导线,我们需要采用不同于直线检测的方法。由于OpenCV没有直接的曲线检测函数,如同它对直线提供的HoughLinesHoughLinesP,检测曲线通常需要更多的图像处理步骤和算法:

  1. 边缘检测:首先使用Canny边缘检测器检测图像中的边缘。

  2. 寻找轮廓 :然后使用cv2.findContours来寻找边缘连接的轮廓。轮廓可能对应于图像中的曲线。

  3. 轮廓分析:分析这些轮廓,筛选出满足特定条件的轮廓,如长度、曲率等。

  4. 绘制轮廓:在原始图像上绘制这些轮廓。

下面是成品代码:

python 复制代码
# coding=UTF-8

import cv2
import numpy as np

def load_and_detect_curves(image_path, new_width, new_height):
    # 加载图像
    image = cv2.imread(image_path)
    if image is None:
        print("无法加载图像")
        return

    # 调整图像尺寸
    resized_image = cv2.resize(image, (new_width, new_height))

    # 将图像转换为灰度图
    gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

    # 应用高斯模糊
    blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

    # 使用Canny边缘检测器检测边缘
    edges = cv2.Canny(blurred_image, 50, 150, apertureSize=3)

    # 寻找轮廓
    contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # 筛选和绘制轮廓
    for contour in contours:
        # 可以在这里添加条件筛选特定轮廓
        if len(contour) > 100:  # 例如,筛选长度大于100的轮廓
            cv2.drawContours(resized_image, [contour], -1, (0, 255, 0), 2)

    # 显示结果
    cv2.imshow('Detected Curves', resized_image)
    if cv2.waitKey(0) & 0xFF == ord('q'):
        cv2.destroyAllWindows()

# 使用函数
load_and_detect_curves('./images/2.png', 800, 600)  # 替换为你的图像路径和期望的尺寸
# load_and_detect_curves('./images/demo.jpg', 800, 600)  # 替换为你的图像路径和期望的尺寸

下面是运行效果:

相关推荐
棒棒的皮皮2 分钟前
【OpenCV】Python图像处理之掩膜
图像处理·python·opencv·计算机视觉
木头左3 分钟前
门控注意力单元与LSTM细胞状态更新的协同机制
人工智能·rnn·lstm
xhyyvr4 分钟前
VR 超凡赛车:沉浸式动感驾驶,解锁交通安全普法新体验
人工智能·vr
大千AI助手8 分钟前
马哈拉诺比斯距离:理解数据间的“真实”距离
人工智能·深度学习·机器学习·距离度量·大千ai助手·马氏距离·马哈拉诺比斯距离
玖日大大9 分钟前
基于 Hugging Face Transformers 搭建情感分析模型:从原理到实战
人工智能·学习
老蒋新思维1 小时前
创客匠人峰会复盘:AI 时代知识变现,从流量思维到共识驱动的系统重构
大数据·人工智能·tcp/ip·重构·创始人ip·创客匠人·知识变现
shayudiandian2 小时前
用深度学习实现语音识别系统
人工智能·深度学习·语音识别
EkihzniY8 小时前
AI+OCR:解锁数字化新视界
人工智能·ocr
东哥说-MES|从入门到精通8 小时前
GenAI-生成式人工智能在工业制造中的应用
大数据·人工智能·智能制造·数字化·数字化转型·mes
铅笔侠_小龙虾9 小时前
深度学习理论推导--梯度下降法
人工智能·深度学习