利用OpenCV实现图片中导线的识别

下面是一个需求,识别图片中的导线,要在图像中检测导线,我们需要采用不同于直线检测的方法。由于OpenCV没有直接的曲线检测函数,如同它对直线提供的HoughLinesHoughLinesP,检测曲线通常需要更多的图像处理步骤和算法:

  1. 边缘检测:首先使用Canny边缘检测器检测图像中的边缘。

  2. 寻找轮廓 :然后使用cv2.findContours来寻找边缘连接的轮廓。轮廓可能对应于图像中的曲线。

  3. 轮廓分析:分析这些轮廓,筛选出满足特定条件的轮廓,如长度、曲率等。

  4. 绘制轮廓:在原始图像上绘制这些轮廓。

下面是成品代码:

python 复制代码
# coding=UTF-8

import cv2
import numpy as np

def load_and_detect_curves(image_path, new_width, new_height):
    # 加载图像
    image = cv2.imread(image_path)
    if image is None:
        print("无法加载图像")
        return

    # 调整图像尺寸
    resized_image = cv2.resize(image, (new_width, new_height))

    # 将图像转换为灰度图
    gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

    # 应用高斯模糊
    blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

    # 使用Canny边缘检测器检测边缘
    edges = cv2.Canny(blurred_image, 50, 150, apertureSize=3)

    # 寻找轮廓
    contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # 筛选和绘制轮廓
    for contour in contours:
        # 可以在这里添加条件筛选特定轮廓
        if len(contour) > 100:  # 例如,筛选长度大于100的轮廓
            cv2.drawContours(resized_image, [contour], -1, (0, 255, 0), 2)

    # 显示结果
    cv2.imshow('Detected Curves', resized_image)
    if cv2.waitKey(0) & 0xFF == ord('q'):
        cv2.destroyAllWindows()

# 使用函数
load_and_detect_curves('./images/2.png', 800, 600)  # 替换为你的图像路径和期望的尺寸
# load_and_detect_curves('./images/demo.jpg', 800, 600)  # 替换为你的图像路径和期望的尺寸

下面是运行效果:

相关推荐
qzhqbb8 分钟前
基于统计方法的语言模型
人工智能·语言模型·easyui
冷眼看人间恩怨33 分钟前
【话题讨论】AI大模型重塑软件开发:定义、应用、优势与挑战
人工智能·ai编程·软件开发
2401_8830410834 分钟前
新锐品牌电商代运营公司都有哪些?
大数据·人工智能
AI极客菌2 小时前
Controlnet作者新作IC-light V2:基于FLUX训练,支持处理风格化图像,细节远高于SD1.5。
人工智能·计算机视觉·ai作画·stable diffusion·aigc·flux·人工智能作画
阿_旭2 小时前
一文读懂| 自注意力与交叉注意力机制在计算机视觉中作用与基本原理
人工智能·深度学习·计算机视觉·cross-attention·self-attention
王哈哈^_^2 小时前
【数据集】【YOLO】【目标检测】交通事故识别数据集 8939 张,YOLO道路事故目标检测实战训练教程!
前端·人工智能·深度学习·yolo·目标检测·计算机视觉·pyqt
Power20246663 小时前
NLP论文速读|LongReward:基于AI反馈来提升长上下文大语言模型
人工智能·深度学习·机器学习·自然语言处理·nlp
数据猎手小k3 小时前
AIDOVECL数据集:包含超过15000张AI生成的车辆图像数据集,目的解决旨在解决眼水平分类和定位问题。
人工智能·分类·数据挖掘
好奇龙猫3 小时前
【学习AI-相关路程-mnist手写数字分类-win-硬件:windows-自我学习AI-实验步骤-全连接神经网络(BPnetwork)-操作流程(3) 】
人工智能·算法
沉下心来学鲁班3 小时前
复现LLM:带你从零认识语言模型
人工智能·语言模型