利用OpenCV实现图片中导线的识别

下面是一个需求,识别图片中的导线,要在图像中检测导线,我们需要采用不同于直线检测的方法。由于OpenCV没有直接的曲线检测函数,如同它对直线提供的HoughLinesHoughLinesP,检测曲线通常需要更多的图像处理步骤和算法:

  1. 边缘检测:首先使用Canny边缘检测器检测图像中的边缘。

  2. 寻找轮廓 :然后使用cv2.findContours来寻找边缘连接的轮廓。轮廓可能对应于图像中的曲线。

  3. 轮廓分析:分析这些轮廓,筛选出满足特定条件的轮廓,如长度、曲率等。

  4. 绘制轮廓:在原始图像上绘制这些轮廓。

下面是成品代码:

python 复制代码
# coding=UTF-8

import cv2
import numpy as np

def load_and_detect_curves(image_path, new_width, new_height):
    # 加载图像
    image = cv2.imread(image_path)
    if image is None:
        print("无法加载图像")
        return

    # 调整图像尺寸
    resized_image = cv2.resize(image, (new_width, new_height))

    # 将图像转换为灰度图
    gray_image = cv2.cvtColor(resized_image, cv2.COLOR_BGR2GRAY)

    # 应用高斯模糊
    blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

    # 使用Canny边缘检测器检测边缘
    edges = cv2.Canny(blurred_image, 50, 150, apertureSize=3)

    # 寻找轮廓
    contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

    # 筛选和绘制轮廓
    for contour in contours:
        # 可以在这里添加条件筛选特定轮廓
        if len(contour) > 100:  # 例如,筛选长度大于100的轮廓
            cv2.drawContours(resized_image, [contour], -1, (0, 255, 0), 2)

    # 显示结果
    cv2.imshow('Detected Curves', resized_image)
    if cv2.waitKey(0) & 0xFF == ord('q'):
        cv2.destroyAllWindows()

# 使用函数
load_and_detect_curves('./images/2.png', 800, 600)  # 替换为你的图像路径和期望的尺寸
# load_and_detect_curves('./images/demo.jpg', 800, 600)  # 替换为你的图像路径和期望的尺寸

下面是运行效果:

相关推荐
卧式纯绿6 分钟前
每日文献(八)——Part one
人工智能·yolo·目标检测·计算机视觉·目标跟踪·cnn
巷95512 分钟前
OpenCV图像形态学:原理、操作与应用详解
人工智能·opencv·计算机视觉
深蓝易网41 分钟前
为什么制造企业需要用MES管理系统升级改造车间
大数据·运维·人工智能·制造·devops
xiangzhihong81 小时前
Amodal3R ,南洋理工推出的 3D 生成模型
人工智能·深度学习·计算机视觉
阿linlin1 小时前
OpenCV--图像预处理学习01
opencv·学习·计算机视觉
狂奔solar1 小时前
diffusion-vas 提升遮挡区域的分割精度
人工智能·深度学习
资源大全免费分享1 小时前
MacOS 的 AI Agent 新星,本地沙盒驱动,解锁 macOS 操作新体验!
人工智能·macos·策略模式
跳跳糖炒酸奶2 小时前
第四章、Isaacsim在GUI中构建机器人(2):组装一个简单的机器人
人工智能·python·算法·ubuntu·机器人
AI.NET 极客圈2 小时前
AI与.NET技术实操系列(四):使用 Semantic Kernel 和 DeepSeek 构建AI应用
人工智能·.net
Debroon2 小时前
应华为 AI 医疗军团之战,各方动态和反应
人工智能·华为