图像处理Scharr 算子

Scharr算子是用于图像边缘检测的一种算子,它类似于Sobel算子,但是对边缘的响应更加强烈。它可以用来检测图像中的边缘、轮廓等特征。

原理:

Scharr算子是一种卷积核(也称为卷积模板),用于计算图像的梯度。它包含两个3x3的卷积核,分别用于计算图像在水平方向和垂直方向上的梯度。这两个卷积核分别可以表示为:

水平方向的Scharr卷积核:
K x = [ − 3 0 3 − 10 0 10 − 3 0 3 ] K_x = \begin{bmatrix} -3 & 0 & 3 \\ -10 & 0 & 10 \\ -3 & 0 & 3 \end{bmatrix} Kx= −3−10−30003103

垂直方向的Scharr卷积核:
K y = [ − 3 − 10 − 3 0 0 0 3 10 3 ] K_y = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ 3 & 10 & 3 \end{bmatrix} Ky= −303−10010−303

作用和适用场景:

Scharr算子主要用于图像边缘检测,特别是对于边缘细节较多的图像。它可以提供更强的边缘响应,相比于其他算子,更能够准确地检测到图像中的细微变化,因此适用于对细节要求较高的图像处理任务。

示例代码:

在 OpenCV 中,可以使用 cv2.Scharr() 函数来应用Scharr算子进行图像边缘检测。

python 复制代码
import cv2
import numpy as np

def show_images(image):
    cv2.namedWindow('image',cv2.WINDOW_KEEPRATIO)
    cv2.imshow('image',image)
    cv2.waitKey()
    cv2.destroyAllWindows()

def Scharr(image):
    # 应用Scharr算子进行边缘检测
    grad_x=cv2.Scharr(image,cv2.CV_64F,1,0)# 在x方向上计算梯度
    grad_y=cv2.Scharr(image,cv2.CV_64F,0,1)# 在y方向上计算梯度

    abs_x=cv2.convertScaleAbs(grad_x)
    abs_y=cv2.convertScaleAbs(grad_y)

    grad_xy=cv2.addWeighted(abs_x,0.5,abs_y,0.5,0)

    return grad_x,grad_y,grad_xy

if __name__ == '__main__':
    # 读取图像
    img = cv2.imread('cat-dog.png', flags=0)
    re_img=Scharr(img)
    # 将四张图像连接成一个大图像
    top_row = np.hstack((img, re_img[0]))
    bottom_row = np.hstack((re_img[1], re_img[2]))
    combined_img = np.vstack((top_row, bottom_row))

    show_images(combined_img)
相关推荐
嗯嗯=1 天前
python学习篇
开发语言·python·学习
WoY20201 天前
opencv-python在ubuntu系统中缺少依赖
python·opencv·ubuntu
大游小游之老游1 天前
Python中如何实现一个程序运行时,调用另一文件中的函数
python
mantch1 天前
个人 LLM 接口服务项目:一个简洁的 AI 入口
人工智能·python·llm
weixin_445054721 天前
力扣热题51
c++·python·算法·leetcode
朱朱没烦恼yeye1 天前
java基础学习
java·python·学习
databook1 天前
数据可视化五大黄金原则:让你的图表“会说话”
python·数据分析·数据可视化
ai_top_trends1 天前
2026 年度工作计划 PPT 模板与 AI 生成方法详解
人工智能·python·powerpoint
智航GIS1 天前
9.4 Word 自动化
python·自动化·word
2501_941809141 天前
面向多活架构与数据地域隔离的互联网系统设计思考与多语言工程实现实践分享记录
java·开发语言·python