图像处理Scharr 算子

Scharr算子是用于图像边缘检测的一种算子,它类似于Sobel算子,但是对边缘的响应更加强烈。它可以用来检测图像中的边缘、轮廓等特征。

原理:

Scharr算子是一种卷积核(也称为卷积模板),用于计算图像的梯度。它包含两个3x3的卷积核,分别用于计算图像在水平方向和垂直方向上的梯度。这两个卷积核分别可以表示为:

水平方向的Scharr卷积核:
K x = [ − 3 0 3 − 10 0 10 − 3 0 3 ] K_x = \begin{bmatrix} -3 & 0 & 3 \\ -10 & 0 & 10 \\ -3 & 0 & 3 \end{bmatrix} Kx= −3−10−30003103

垂直方向的Scharr卷积核:
K y = [ − 3 − 10 − 3 0 0 0 3 10 3 ] K_y = \begin{bmatrix} -3 & -10 & -3 \\ 0 & 0 & 0 \\ 3 & 10 & 3 \end{bmatrix} Ky= −303−10010−303

作用和适用场景:

Scharr算子主要用于图像边缘检测,特别是对于边缘细节较多的图像。它可以提供更强的边缘响应,相比于其他算子,更能够准确地检测到图像中的细微变化,因此适用于对细节要求较高的图像处理任务。

示例代码:

在 OpenCV 中,可以使用 cv2.Scharr() 函数来应用Scharr算子进行图像边缘检测。

python 复制代码
import cv2
import numpy as np

def show_images(image):
    cv2.namedWindow('image',cv2.WINDOW_KEEPRATIO)
    cv2.imshow('image',image)
    cv2.waitKey()
    cv2.destroyAllWindows()

def Scharr(image):
    # 应用Scharr算子进行边缘检测
    grad_x=cv2.Scharr(image,cv2.CV_64F,1,0)# 在x方向上计算梯度
    grad_y=cv2.Scharr(image,cv2.CV_64F,0,1)# 在y方向上计算梯度

    abs_x=cv2.convertScaleAbs(grad_x)
    abs_y=cv2.convertScaleAbs(grad_y)

    grad_xy=cv2.addWeighted(abs_x,0.5,abs_y,0.5,0)

    return grad_x,grad_y,grad_xy

if __name__ == '__main__':
    # 读取图像
    img = cv2.imread('cat-dog.png', flags=0)
    re_img=Scharr(img)
    # 将四张图像连接成一个大图像
    top_row = np.hstack((img, re_img[0]))
    bottom_row = np.hstack((re_img[1], re_img[2]))
    combined_img = np.vstack((top_row, bottom_row))

    show_images(combined_img)
相关推荐
DanCheng-studio8 小时前
网安毕业设计简单的方向答疑
python·毕业设计·毕设
轻抚酸~9 小时前
KNN(K近邻算法)-python实现
python·算法·近邻算法
独行soc10 小时前
2025年渗透测试面试题总结-264(题目+回答)
网络·python·安全·web安全·网络安全·渗透测试·安全狮
汤姆yu11 小时前
基于python的外卖配送及数据分析系统
开发语言·python·外卖分析
如何原谅奋力过但无声11 小时前
TensorFlow 1.x常用函数总结(持续更新)
人工智能·python·tensorflow
翔云 OCR API11 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
AndrewHZ12 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
温轻舟13 小时前
Python自动办公工具05-Word表中相同内容的单元格自动合并
开发语言·python·word·自动化办公·温轻舟
习习.y14 小时前
python笔记梳理以及一些题目整理
开发语言·笔记·python
撸码猿14 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc