YOLOv5 分类模型 数据集加载 3

YOLOv5 分类模型 数据集加载 3 自定义类别

flyfish

YOLOv5 分类模型 数据集加载 1 样本处理
YOLOv5 分类模型 数据集加载 2 切片处理
YOLOv5 分类模型的预处理(1) Resize 和 CenterCrop
YOLOv5 分类模型的预处理(2)ToTensor 和 Normalize
YOLOv5 分类模型 Top 1和Top 5 指标说明
YOLOv5 分类模型 Top 1和Top 5 指标实现

之前的处理方式是类别名字是文件夹名字,类别ID是按照文件夹名字的字母顺序

现在是类别名字是文件夹名字,按照文件列表名字顺序 例如

py 复制代码
classes_name=['n02086240', 'n02087394', 'n02088364', 'n02089973', 'n02093754', 
'n02096294', 'n02099601', 'n02105641', 'n02111889', 'n02115641']

n02086240 类别ID是0

n02087394 类别ID是1

代码处理是

py 复制代码
if classes_name is None or not classes_name:
    classes, class_to_idx = self.find_classes(self.root)
    print("not classes_name")

else:
    classes = classes_name
    class_to_idx ={cls_name: i for i, cls_name in enumerate(classes)}
    print("is classes_name")

完整

py 复制代码
import time
from models.common import DetectMultiBackend
import os
import os.path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np

import torch
from PIL import Image
import torchvision.transforms as transforms

import sys

classes_name=['n02086240', 'n02087394', 'n02088364', 'n02089973', 'n02093754', 'n02096294', 'n02099601', 'n02105641', 'n02111889', 'n02115641']
              
class DatasetFolder:

    def __init__(
        self,
        root: str,

    ) -> None:
        self.root = root

        if classes_name is None or not classes_name:
            classes, class_to_idx = self.find_classes(self.root)
            print("not classes_name")

        else:
            classes = classes_name
            class_to_idx ={cls_name: i for i, cls_name in enumerate(classes)}
            print("is classes_name")

        print("classes:",classes)
        
        print("class_to_idx:",class_to_idx)
        samples = self.make_dataset(self.root, class_to_idx)

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
        self.targets = [s[1] for s in samples]

    @staticmethod
    def make_dataset(
        directory: str,
        class_to_idx: Optional[Dict[str, int]] = None,

    ) -> List[Tuple[str, int]]:

        directory = os.path.expanduser(directory)

        if class_to_idx is None:
            _, class_to_idx = self.find_classes(directory)
        elif not class_to_idx:
            raise ValueError("'class_to_index' must have at least one entry to collect any samples.")

        instances = []
        available_classes = set()
        for target_class in sorted(class_to_idx.keys()):
            class_index = class_to_idx[target_class]
            target_dir = os.path.join(directory, target_class)
            if not os.path.isdir(target_dir):
                continue
            for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
                for fname in sorted(fnames):
                    path = os.path.join(root, fname)
                    if 1:  # 验证:
                        item = path, class_index
                        instances.append(item)

                        if target_class not in available_classes:
                            available_classes.add(target_class)

        empty_classes = set(class_to_idx.keys()) - available_classes
        if empty_classes:
            msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "

        return instances

    def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:

        classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
        if not classes:
            raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

        class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
        return classes, class_to_idx

    def __getitem__(self, index: int) -> Tuple[Any, Any]:

        path, target = self.samples[index]
        sample = self.loader(path)

        return sample, target

    def __len__(self) -> int:
        return len(self.samples)

    def loader(self, path):
        print("path:", path)
        #img = cv2.imread(path)  # BGR HWC
        img=Image.open(path).convert("RGB") # RGB HWC
        return img


def time_sync():
    return time.time()

#sys.exit() 
dataset = DatasetFolder(root="/media/a/flyfish/source/yolov5/datasets/imagewoof/val")

#image, label=dataset[7]

#
weights = "/home/a/classes.pt"
device = "cpu"
model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False)
model.eval()
print(model.names)
print(type(model.names))

mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
def preprocess(images):
  

    #实现 PyTorch Resize
    target_size =224

    img_w = images.width
    img_h = images.height
    
    if(img_h >= img_w):# hw
 
        resize_img = images.resize((target_size, int(target_size * img_h / img_w)), Image.BILINEAR)
    else:
        resize_img = images.resize((int(target_size * img_w  / img_h),target_size), Image.BILINEAR)

    #实现 PyTorch CenterCrop
    width = resize_img.width
    height = resize_img.height

    center_x,center_y = width//2,height//2
    left = center_x - (target_size//2)
    top = center_y- (target_size//2)
    right =center_x +target_size//2
    bottom = center_y+target_size//2
    cropped_img = resize_img.crop((left, top, right, bottom))

    #实现 PyTorch ToTensor Normalize
    images = np.asarray(cropped_img)
    print("preprocess:",images.shape)
    images = images.astype('float32')
    images = (images/255-mean)/std
    images = images.transpose((2, 0, 1))# HWC to CHW
    print("preprocess:",images.shape)

    images = np.ascontiguousarray(images)
    images=torch.from_numpy(images)
    #images = images.unsqueeze(dim=0).float()
    return images

pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0]
# current batch size =1
for i, (images, labels) in enumerate(dataset):
    print("i:", i)
    im = preprocess(images)
    images = im.unsqueeze(0).to("cpu").float()
 
    print(images.shape)
    t1 = time_sync()
    images = images.to(device, non_blocking=True)
    t2 = time_sync()
    # dt[0] += t2 - t1

    y = model(images)
    y=y.numpy()
   
    #print("y:", y)
    t3 = time_sync()
    # dt[1] += t3 - t2
    #batch size >1 图像推理结果是二维的
    #y: [[     4.0855     -1.1707     -1.4998      -0.935     -1.9979      -2.258     -1.4691     -1.0867     -1.9042    -0.99979]]

    tmp1=y.argsort()[:,::-1][:, :5]

    #batch size =1 图像推理结果是一维的, 就要处理下argsort的维度
    #y: [     3.7441      -1.135     -1.1293     -0.9422     -1.6029     -2.0561      -1.025     -1.5842     -1.3952     -1.1824]
   
    #print("tmp1:", tmp1)
    pred.append(tmp1)
    #print("labels:", labels)
    targets.append(labels)

    #print("for pred:", pred)  # list
    #print("for targets:", targets)  # list
    # dt[2] += time_sync() - t3


pred, targets = np.concatenate(pred), np.array(targets)
print("pred:", pred)
print("pred:", pred.shape)
print("targets:", targets)
print("targets:", targets.shape)
correct = ((targets[:, None] == pred)).astype(np.float32)
print("correct:", correct.shape)
print("correct:", correct)
acc = np.stack((correct[:, 0], correct.max(1)), axis=1)  # (top1, top5) accuracy
print("acc:", acc.shape)
print("acc:", acc)
top = acc.mean(0)
print("top1:", top[0])
print("top5:", top[1])
相关推荐
feifeigo1239 小时前
高光谱遥感图像处理之数据分类的fcm算法
图像处理·算法·分类
hao_wujing13 小时前
YOLOv8在单目向下多车辆目标检测中的应用
人工智能·yolo·目标检测
Dneccc18 小时前
YOLO+UI(C#)开发
yolo
南斯拉夫的铁托21 小时前
labelimg安装及使用指南(yolo)
开发语言·python·yolo
MUTA️2 天前
ultalytics代码中模型接收多层输入的处理
深度学习·算法·yolo·机器学习·计算机视觉
机器学习之心2 天前
分类预测 | Matlab实现ABC-Transformer人工蜂群算法优化编码器多特征分类预测/故障诊断Matlab实现
算法·matlab·分类
巷9552 天前
YOLO v3:目标检测领域的质变性飞跃
人工智能·yolo·目标检测
软件派2 天前
基于YOLO算法的目标检测系统实现指南
算法·yolo·目标检测
yzx9910133 天前
使用SVM进行图像分类
机器学习·支持向量机·分类
巷9553 天前
YOLO v2:目标检测领域的全面性进化
人工智能·yolo·目标检测