YOLOv5 分类模型 数据集加载 3

YOLOv5 分类模型 数据集加载 3 自定义类别

flyfish

YOLOv5 分类模型 数据集加载 1 样本处理
YOLOv5 分类模型 数据集加载 2 切片处理
YOLOv5 分类模型的预处理(1) Resize 和 CenterCrop
YOLOv5 分类模型的预处理(2)ToTensor 和 Normalize
YOLOv5 分类模型 Top 1和Top 5 指标说明
YOLOv5 分类模型 Top 1和Top 5 指标实现

之前的处理方式是类别名字是文件夹名字,类别ID是按照文件夹名字的字母顺序

现在是类别名字是文件夹名字,按照文件列表名字顺序 例如

py 复制代码
classes_name=['n02086240', 'n02087394', 'n02088364', 'n02089973', 'n02093754', 
'n02096294', 'n02099601', 'n02105641', 'n02111889', 'n02115641']

n02086240 类别ID是0

n02087394 类别ID是1

代码处理是

py 复制代码
if classes_name is None or not classes_name:
    classes, class_to_idx = self.find_classes(self.root)
    print("not classes_name")

else:
    classes = classes_name
    class_to_idx ={cls_name: i for i, cls_name in enumerate(classes)}
    print("is classes_name")

完整

py 复制代码
import time
from models.common import DetectMultiBackend
import os
import os.path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np

import torch
from PIL import Image
import torchvision.transforms as transforms

import sys

classes_name=['n02086240', 'n02087394', 'n02088364', 'n02089973', 'n02093754', 'n02096294', 'n02099601', 'n02105641', 'n02111889', 'n02115641']
              
class DatasetFolder:

    def __init__(
        self,
        root: str,

    ) -> None:
        self.root = root

        if classes_name is None or not classes_name:
            classes, class_to_idx = self.find_classes(self.root)
            print("not classes_name")

        else:
            classes = classes_name
            class_to_idx ={cls_name: i for i, cls_name in enumerate(classes)}
            print("is classes_name")

        print("classes:",classes)
        
        print("class_to_idx:",class_to_idx)
        samples = self.make_dataset(self.root, class_to_idx)

        self.classes = classes
        self.class_to_idx = class_to_idx
        self.samples = samples
        self.targets = [s[1] for s in samples]

    @staticmethod
    def make_dataset(
        directory: str,
        class_to_idx: Optional[Dict[str, int]] = None,

    ) -> List[Tuple[str, int]]:

        directory = os.path.expanduser(directory)

        if class_to_idx is None:
            _, class_to_idx = self.find_classes(directory)
        elif not class_to_idx:
            raise ValueError("'class_to_index' must have at least one entry to collect any samples.")

        instances = []
        available_classes = set()
        for target_class in sorted(class_to_idx.keys()):
            class_index = class_to_idx[target_class]
            target_dir = os.path.join(directory, target_class)
            if not os.path.isdir(target_dir):
                continue
            for root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):
                for fname in sorted(fnames):
                    path = os.path.join(root, fname)
                    if 1:  # 验证:
                        item = path, class_index
                        instances.append(item)

                        if target_class not in available_classes:
                            available_classes.add(target_class)

        empty_classes = set(class_to_idx.keys()) - available_classes
        if empty_classes:
            msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "

        return instances

    def find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:

        classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())
        if not classes:
            raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")

        class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}
        return classes, class_to_idx

    def __getitem__(self, index: int) -> Tuple[Any, Any]:

        path, target = self.samples[index]
        sample = self.loader(path)

        return sample, target

    def __len__(self) -> int:
        return len(self.samples)

    def loader(self, path):
        print("path:", path)
        #img = cv2.imread(path)  # BGR HWC
        img=Image.open(path).convert("RGB") # RGB HWC
        return img


def time_sync():
    return time.time()

#sys.exit() 
dataset = DatasetFolder(root="/media/a/flyfish/source/yolov5/datasets/imagewoof/val")

#image, label=dataset[7]

#
weights = "/home/a/classes.pt"
device = "cpu"
model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False)
model.eval()
print(model.names)
print(type(model.names))

mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]
def preprocess(images):
  

    #实现 PyTorch Resize
    target_size =224

    img_w = images.width
    img_h = images.height
    
    if(img_h >= img_w):# hw
 
        resize_img = images.resize((target_size, int(target_size * img_h / img_w)), Image.BILINEAR)
    else:
        resize_img = images.resize((int(target_size * img_w  / img_h),target_size), Image.BILINEAR)

    #实现 PyTorch CenterCrop
    width = resize_img.width
    height = resize_img.height

    center_x,center_y = width//2,height//2
    left = center_x - (target_size//2)
    top = center_y- (target_size//2)
    right =center_x +target_size//2
    bottom = center_y+target_size//2
    cropped_img = resize_img.crop((left, top, right, bottom))

    #实现 PyTorch ToTensor Normalize
    images = np.asarray(cropped_img)
    print("preprocess:",images.shape)
    images = images.astype('float32')
    images = (images/255-mean)/std
    images = images.transpose((2, 0, 1))# HWC to CHW
    print("preprocess:",images.shape)

    images = np.ascontiguousarray(images)
    images=torch.from_numpy(images)
    #images = images.unsqueeze(dim=0).float()
    return images

pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0]
# current batch size =1
for i, (images, labels) in enumerate(dataset):
    print("i:", i)
    im = preprocess(images)
    images = im.unsqueeze(0).to("cpu").float()
 
    print(images.shape)
    t1 = time_sync()
    images = images.to(device, non_blocking=True)
    t2 = time_sync()
    # dt[0] += t2 - t1

    y = model(images)
    y=y.numpy()
   
    #print("y:", y)
    t3 = time_sync()
    # dt[1] += t3 - t2
    #batch size >1 图像推理结果是二维的
    #y: [[     4.0855     -1.1707     -1.4998      -0.935     -1.9979      -2.258     -1.4691     -1.0867     -1.9042    -0.99979]]

    tmp1=y.argsort()[:,::-1][:, :5]

    #batch size =1 图像推理结果是一维的, 就要处理下argsort的维度
    #y: [     3.7441      -1.135     -1.1293     -0.9422     -1.6029     -2.0561      -1.025     -1.5842     -1.3952     -1.1824]
   
    #print("tmp1:", tmp1)
    pred.append(tmp1)
    #print("labels:", labels)
    targets.append(labels)

    #print("for pred:", pred)  # list
    #print("for targets:", targets)  # list
    # dt[2] += time_sync() - t3


pred, targets = np.concatenate(pred), np.array(targets)
print("pred:", pred)
print("pred:", pred.shape)
print("targets:", targets)
print("targets:", targets.shape)
correct = ((targets[:, None] == pred)).astype(np.float32)
print("correct:", correct.shape)
print("correct:", correct)
acc = np.stack((correct[:, 0], correct.max(1)), axis=1)  # (top1, top5) accuracy
print("acc:", acc.shape)
print("acc:", acc)
top = acc.mean(0)
print("top1:", top[0])
print("top5:", top[1])
相关推荐
Coovally AI模型快速验证5 小时前
YOLO、DarkNet和深度学习如何让自动驾驶看得清?
深度学习·算法·yolo·cnn·自动驾驶·transformer·无人机
程序猿小D1 天前
【完整源码+数据集+部署教程】孔洞检测系统源码和数据集:改进yolo11-RetBlock
yolo·计算机视觉·毕业设计·数据集·yolo11·孔洞检测
楚韵天工1 天前
基于多分类的工业异常声检测及应用
人工智能·深度学习·神经网络·目标检测·机器学习·分类·数据挖掘
OpenC++1 天前
【机器学习】核心分类及详细介绍
人工智能·机器学习·分类
Blossom.1182 天前
把大模型当“温度计”——基于 LLM 的分布式系统异常根因定位实战
人工智能·python·深度学习·机器学习·自然语言处理·分类·bert
RIKI_12 天前
【浅学】tflite-micro + ESP32S3 + VScode + ESP-IDF 基于例程快速实现自己的图像分类模型训练部署全流程
单片机·分类
云空2 天前
《基于Pytorch实现的声音分类 :网页解读》
人工智能·pytorch·分类
钓了猫的鱼儿2 天前
无人机航拍数据集|第14期 无人机水体污染目标检测YOLO数据集3000张yolov11/yolov8/yolov5可训练
yolo·目标检测·猫脸码客·yolo数据集·无人机航拍数据集·无人机水体污染目标检测
Debroon2 天前
CV 医学影像分类、分割、目标检测,之【血细胞分类】项目拆解
目标检测·分类·数据挖掘
Debroon3 天前
CV 医学影像分类、分割、目标检测,之【肝脏分割】项目拆解
目标检测·分类·数据挖掘