Spark---补充算子

一、Spark补充Transformation算子

1、join,leftOuterJoin,rightOuterJoin,fullOuterJoin

作用在K,V格式的RDD上。根据K进行连接,对(K,V)join(K,W)返回(K,(V,W))

  • join后的分区数与父RDD分区数多的那一个相同。

2、union

合并两个数据集。两个数据集的类型要一致。

  • 返回新的RDD的分区数是合并RDD分区数的总和。

3、intersection

取两个数据集的交集,返回新的RDD与父RDD分区多的一致

4、substract

取两个数据集的差集,结果RDD的分区数与substract前面的RDD的分区数一致。

5、mapPartitions

与map类似,遍历的单位是每个partition上的数据。

6、distinct(map+reduceByKey+map)

7、cogroup

当调用类型(K,V)和(K,W)的数据上时,返回一个数据集(K,(Iterable<V>,Iterable<W>)),子RDD的分区与父RDD多的一致。

二、Spark补充Action算子

1、foreachPartition

遍历的数据是每个partition的数据。

2、collectAsMap

对K,V格式的RDD数据回收转换成Map<K,V>

3、takeSample(boolean,num,seed)

takeSample可以对RDD中的数据随机获取num个,第一个参数是有无放回,第二个参数是随机获取几个元素,第三个参数如果固定,那么每次获取的数据固定。

4、top(num)

对RDD中的所有元素进行由大到小排序,获取前num个元素返回。

5、takeOrdered(num)

对RDD中的所有元素进行由小到大的排序,获取前num个元素返回。

相关推荐
A 计算机毕业设计-小途4 小时前
大四零基础用Vue+ElementUI一周做完化妆品推荐系统?
java·大数据·hadoop·python·spark·毕业设计·毕设
君不见,青丝成雪8 小时前
Flink双流join
大数据·数据仓库·flink
艾希逐月10 小时前
分布式唯一 ID 生成方案
分布式
好好先森&10 小时前
Linux系统:C语言进程间通信信号(Signal)
大数据
EkihzniY10 小时前
结构化 OCR 技术:破解各类检测报告信息提取难题
大数据·ocr
吱吱企业安全通讯软件10 小时前
吱吱企业通讯软件保证内部通讯安全,搭建数字安全体系
大数据·网络·人工智能·安全·信息与通信·吱吱办公通讯
云手机掌柜10 小时前
Tumblr长文运营:亚矩阵云手机助力多账号轮询与关键词布局系统
大数据·服务器·tcp/ip·矩阵·流量运营·虚幻·云手机
拓端研究室13 小时前
专题:2025全球消费趋势与中国市场洞察报告|附300+份报告PDF、原数据表汇总下载
大数据·信息可视化·pdf
齐木卡卡西在敲代码13 小时前
kafka的pull的依据
分布式·kafka