Spark---补充算子

一、Spark补充Transformation算子

1、join,leftOuterJoin,rightOuterJoin,fullOuterJoin

作用在K,V格式的RDD上。根据K进行连接,对(K,V)join(K,W)返回(K,(V,W))

  • join后的分区数与父RDD分区数多的那一个相同。

2、union

合并两个数据集。两个数据集的类型要一致。

  • 返回新的RDD的分区数是合并RDD分区数的总和。

3、intersection

取两个数据集的交集,返回新的RDD与父RDD分区多的一致

4、substract

取两个数据集的差集,结果RDD的分区数与substract前面的RDD的分区数一致。

5、mapPartitions

与map类似,遍历的单位是每个partition上的数据。

6、distinct(map+reduceByKey+map)

7、cogroup

当调用类型(K,V)和(K,W)的数据上时,返回一个数据集(K,(Iterable<V>,Iterable<W>)),子RDD的分区与父RDD多的一致。

二、Spark补充Action算子

1、foreachPartition

遍历的数据是每个partition的数据。

2、collectAsMap

对K,V格式的RDD数据回收转换成Map<K,V>

3、takeSample(boolean,num,seed)

takeSample可以对RDD中的数据随机获取num个,第一个参数是有无放回,第二个参数是随机获取几个元素,第三个参数如果固定,那么每次获取的数据固定。

4、top(num)

对RDD中的所有元素进行由大到小排序,获取前num个元素返回。

5、takeOrdered(num)

对RDD中的所有元素进行由小到大的排序,获取前num个元素返回。

相关推荐
Gofarlic_oms19 小时前
Windchill用户登录与模块访问失败问题排查与许可证诊断
大数据·运维·网络·数据库·人工智能
Zoey的笔记本10 小时前
2026告别僵化工作流:支持自定义字段的看板工具选型与部署指南
大数据·前端·数据库
lingling00910 小时前
2026 年 BI 发展新趋势:AI 功能如何让数据分析工具 “思考” 和 “对话”?
大数据·人工智能·数据分析
鹧鸪云光伏10 小时前
光伏项目多,如何高效管理?
大数据·人工智能·光伏
Acrel1870210670610 小时前
浅谈电气防火限流保护器设计在消防安全中的应用价值
大数据·网络
赵谨言11 小时前
Python串口的三相交流电机控制系统研究
大数据·开发语言·经验分享·python
汇智信科11 小时前
智慧矿山 & 工业大数据创新解决方案 —— 智能能源管理系统
大数据·能源·智慧矿山·工业大数据·汇智信科·智能能源管理系统·多元维度
企业对冲系统官12 小时前
基差风险管理系统日志分析功能的架构与实现
大数据·网络·数据库·算法·github·动态规划
忍冬行者13 小时前
Elasticsearch 超大日志流量集群搭建(网关 + 独立 Master + 独立 Data 纯生产架构,角色完全分离,百万级日志吞吐)
大数据·elasticsearch·云原生·架构·云计算
阿坤带你走近大数据13 小时前
如何解决农业数据的碎片化问题
大数据·人工智能·rag·大模型应用