大数据学习(23)-hive on mapreduce对比hive on spark

&&大数据学习&&

🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门

💖如果觉得博主的文章还不错的话,请点赞👍+收藏⭐️+留言📝支持一下博主哦🤞


Hive on Spark 和 Hive on MapReduce 是两种不同的 Hive 运行环境,它们分别使用 Apache Spark 和 Apache MapReduce 作为底层的计算引擎。

  1. Hive on Spark:
    Hive on Spark 是使用 Apache Spark 作为计算引擎的 Hive 版本。它利用 Spark 的分布式计算和内存计算能力,提高了 Hive 的查询性能和响应时间。与传统的 Hive on MapReduce 相比,Hive on Spark 可以更好地利用集群资源,提高查询效率。

Hive on Spark 的优点包括:

  • 性能提升:Spark 的内存计算能力可以减少磁盘 I/O 操作,提高查询速度。
  • 动态数据流:Spark 支持实时数据流处理,可以轻松地与 Hive 集成,实现实时数据分析。
  • 通用性:Spark 可以运行在多种集群管理器(如 YARN、Mesos、Kubernetes)上,具有更好的通用性。
  1. Hive on MapReduce:
    Hive on MapReduce 是使用 Apache MapReduce 作为计算引擎的 Hive 版本。MapReduce 是一种分布式计算框架,将任务分割成多个小任务,并在集群中的多个节点上并行执行。Hive on MapReduce 主要面向批处理查询,适合处理大规模数据集。

Hive on MapReduce 的优点包括:

  • 稳定性:MapReduce 框架经过多年发展和广泛应用,具有较高的稳定性和可靠性。
  • 数据处理能力:MapReduce 可以处理复杂的数据处理任务,支持自定义 Map 和 Reduce 函数,适用于复杂的分析和查询操作。
  • 批处理:Hive on MapReduce 适合批处理大量数据,可以处理超大规模数据集。

需要注意的是,随着 Apache Spark 的普及和发展,Hive on Spark 逐渐成为主流的 Hive 运行环境。许多公司和组织已经将 Spark 作为其默认的计算引擎,并逐渐将 Hive 从 MapReduce 迁移到 Spark 上。然而,对于一些特定的数据分析和查询需求,Hive on MapReduce 可能仍然具有其优势和用途。

相关推荐
q***07144 小时前
【分布式】Hadoop完全分布式的搭建(零基础)
大数据·hadoop·分布式
張萠飛4 小时前
Phoenix+Hbase和Doris两个方案如何选择,能不能拿Doris完全替代Phoenix+Hbase?有什么难点?
大数据·数据库·hbase
黄雪超11 小时前
从流批一体到湖仓一体架构演进的思考
大数据·架构·数据湖
筑梦之人13 小时前
Spark-3.5.7文档1 - 快速开始
spark
Elastic 中国社区官方博客14 小时前
Observability:适用于 PHP 的 OpenTelemetry:EDOT PHP 加入 OpenTelemetry 项目
大数据·开发语言·人工智能·elasticsearch·搜索引擎·全文检索·php
白鲸开源20 小时前
实战干货:Apache DolphinScheduler 参数使用与优化总结
大数据·程序员·开源
yumgpkpm20 小时前
CMP(类Cloudera CDP 7.3 404版华为Kunpeng)与其他大数据平台对比
大数据·hive·hadoop·elasticsearch·kafka·hbase·cloudera
JZC_xiaozhong21 小时前
跨系统流程如何打通?选 BPM 平台认准这三点
大数据·运维·自动化·数据集成与应用集成·业务流程管理·流程设计可视化·流程监控
中科岩创21 小时前
某地公园桥梁自动化监测服务项目
大数据·人工智能·物联网·自动化
希赛网21 小时前
2025年第四期DAMA数据治理CDGA考试练习题
大数据·cdga·cdgp·dama·数据治理·题库