numpy.where ()函数及np.where和pandas的配合使用

numpy.where介绍

numpy.where()官方文档

NumPy 中的 numpy.where 函数:灵活的条件选择器

NumPy 是 Python 中一个强大的数值计算库,其中的 numpy.where 函数是其功能强大且常用的功能之一。这个函数可以根据条件选择返回来自两个不同数组的元素,在条件为真时返回第一个数组的元素,在条件为假时返回第二个数组的元素。让我们来深入了解这个函数的用法和功能。

函数基本形式

numpy.where(condition, [x, y]) 可以接受三个参数:condition 作为条件,xy 作为选择的两个数组。当只提供 condition 参数时,这个函数等同于 np.asarray(condition).nonzero(),用来获取条件为真的索引。但这篇文章将重点讨论提供了三个参数的情况。

参数解析

  • condition:一个布尔类型的数组,用来指定选择哪些元素来自数组 x 或者 y
  • xy:作为条件为真或假时的返回值的两个数组。

返回值

numpy.where 函数返回一个数组,其中包含了根据条件选择的元素。当条件为真时,返回来自数组 x 的元素,否则返回来自数组 y 的元素。

示例

  • 一维数组的条件选择:

    css 复制代码
    pythonCopy code
    import numpy as np
    
    a = np.arange(10)
    result = np.where(a < 5, a, 10 * a)
    print(result)

    这段代码会输出 [0, 1, 2, 3, 4, 50, 60, 70, 80, 90],根据条件 a < 5 选择了不同的元素。

  • 多维数组的条件选择:

    lua 复制代码
    pythonCopy code
    import numpy as np
    
    result = np.where([[True, False], [True, True]],
                      [[1, 2], [3, 4]],
                      [[9, 8], [7, 6]])
    print(result)

    这段代码会输出一个二维数组 [[1, 8], [3, 4]],根据提供的条件选择了不同位置的元素。

  • 广播操作:

    ini 复制代码
    pythonCopy code
    import numpy as np
    
    x, y = np.ogrid[:3, :4]
    result = np.where(x < y, x, 10 + y)
    print(result)
    
    array([[10,  0,  0,  0],
       [10, 11,  1,  1],
       [10, 11, 12,  2]])

    这个例子展示了如何对两个不同形状的数组进行条件选择。

总结

numpy.where 函数在处理条件选择时非常灵活,可以用于一维或多维数组,并且支持数组的广播操作。通过合理利用这个函数,我们可以简洁高效地根据条件选择数组元素,是 NumPy 中一个不可或缺的重要工具。

无论是数据处理、条件筛选还是数组操作,numpy.where 函数都是进行条件选择的绝佳选择,能够快速、高效地满足多种需求。

np.where和pandas的配合使用

在特征工程中经常需要使用数据清洗,这时候就可以使用where和pd配合来进行数据筛选。

bash 复制代码
 best = np.where(df['hearing(left)'] < df['hearing(right)'], 
                    df['hearing(left)'],  df['hearing(right)'])

例子:

这里使用了 NumPy 的 numpy.where 函数来比较 DataFrame 中两列数据('hearing(left)''hearing(right)'),并根据条件选择对应位置的值。 具体来说,它会比较 'hearing(left)' 列和 'hearing(right)' 列中的每个元素。当 'hearing(left)' 列中的元素小于 'hearing(right)' 列中的对应元素时,best 数组中对应位置的值将会是 'hearing(left)' 列的值;反之,则是 'hearing(right)' 列的值。

相关推荐
唐古乌梁海10 小时前
【pandas】-4- 索新增列,assign,applay,map使用
pandas
折翼的恶魔1 天前
数据分析:排序
python·数据分析·pandas
万粉变现经纪人1 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘cuml’问题
python·scrapy·beautifulsoup·pandas·ai编程·pip·scipy
折翼的恶魔1 天前
数据分析:合并二
python·数据分析·pandas
☼←安于亥时→❦1 天前
数据分析之Pandas入门小结
python·pandas
TwoAI2 天前
Pandas 数据分析:从入门到精通的数据处理核心
数据挖掘·数据分析·pandas
不枯石3 天前
Python实现点云法向量各种方向设定
python·计算机视觉·numpy
万粉变现经纪人3 天前
如何解决pip安装报错ModuleNotFoundError: No module named ‘sympy’问题
python·beautifulsoup·pandas·scikit-learn·pyqt·pip·scipy
折翼的恶魔4 天前
数据分析:合并
python·数据分析·pandas
悟乙己4 天前
PySpark 与 Pandas 的较量:Databricks 中 SQL Server 到 Snowflake 的数据迁移之旅
数据库·pandas·pyspark