深度学习(小土堆)


使用transform

加载数据集,查看数据集的属性

将图片转换成tensor类型

python 复制代码
dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)

print(test_set[0])

将该数据的数据显示在tensorboard中
Dataloader

python 复制代码
import torchvision
from torch.utils.data import DataLoader

#准备测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

test_loader = DataLoader(dataset = test_data,batch_size=4,shuffle=True,num_workers=0,drop_last=False)
#测试数据集中第一张图片集
img,target = test_data[0]
print(img.shape)
print(target)

for data in  test_loader:
    imgs,targets = data
    print(imgs.shape)
    print(targets)

出现以上问题,需要将numberworks设置为0

drop_last 当取数据有余数时,是舍去还是保留

python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#准备测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset = test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True)
#测试数据集中第一张图片集
img,target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("DataLodaer")

#shuffle 为True 两次结果不一样
for epoch in range(2):
    step = 0
    for data in  test_loader:
        imgs,targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch:{}".format(epoch),imgs,step)
        step = step+1

writer.close()

神经网络

相关推荐
谷玉树2 分钟前
框架分类与选型:一种清晰的三层分类法
人工智能·pytorch·机器学习·架构·django·前端框架
张彦峰ZYF2 分钟前
AI赋能原则2解读思考:从权威到机制-AI 时代的分层式信任体系
人工智能·ai·aigc
小程故事多_805 分钟前
从固定流程到主动思考,LangGraph 重构智能体 RAG,医疗问答多步推理能力爆发
人工智能·重构·aigc
GIS数据转换器10 分钟前
基于GIS的智慧招商引资数据可视化系统
人工智能·信息可视化·数据挖掘·数据分析·无人机·旅游
我爱鸢尾花18 分钟前
RNN公式推导、案例实现及Python实现
人工智能·python·rnn·深度学习·神经网络·算法
i***586720 分钟前
自动驾驶---E2E架构演进
人工智能·架构·自动驾驶
二哈喇子!20 分钟前
如何在昇腾平台上部署与优化vLLM:高效推理与性能提升指南
人工智能
CV-杨帆21 分钟前
大模型生成(题目)安全
人工智能
SmartBrain21 分钟前
思考:用信任创造共同的远方
人工智能·华为·创业创新