深度学习(小土堆)


使用transform

加载数据集,查看数据集的属性

将图片转换成tensor类型

python 复制代码
dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)

print(test_set[0])

将该数据的数据显示在tensorboard中
Dataloader

python 复制代码
import torchvision
from torch.utils.data import DataLoader

#准备测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

test_loader = DataLoader(dataset = test_data,batch_size=4,shuffle=True,num_workers=0,drop_last=False)
#测试数据集中第一张图片集
img,target = test_data[0]
print(img.shape)
print(target)

for data in  test_loader:
    imgs,targets = data
    print(imgs.shape)
    print(targets)

出现以上问题,需要将numberworks设置为0

drop_last 当取数据有余数时,是舍去还是保留

python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#准备测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset = test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True)
#测试数据集中第一张图片集
img,target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("DataLodaer")

#shuffle 为True 两次结果不一样
for epoch in range(2):
    step = 0
    for data in  test_loader:
        imgs,targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch:{}".format(epoch),imgs,step)
        step = step+1

writer.close()

神经网络

相关推荐
人工智能AI技术4 小时前
10亿美元合作启发:AIGC正版IP应用开发,迪士尼+OpenAI技术拆解
人工智能
光羽隹衡4 小时前
深度学习——卷积神经网络实现手写数字识别
人工智能·深度学习·cnn
莫非王土也非王臣4 小时前
深度学习之对比学习
人工智能·深度学习·学习
AI_56784 小时前
Selenium+Python可通过 元素定位→操作模拟→断言验证 三步实现Web自动化测试
服务器·人工智能·python
冰西瓜6004 小时前
国科大高级人工智能期末复习(四)联结主义(下)——深度学习
人工智能·深度学习
檐下翻书1734 小时前
世界模型:AI理解物理空间的关键一步
人工智能
2013092416275 小时前
1968年 Hart, Nilsson, Raphael 《最小成本路径启发式确定的形式基础》A* 算法深度研究报告
人工智能·算法
InterestOriented5 小时前
破解银发学习痛点 兴趣岛 “普惠 + 品质” 模式打造积极老龄化范本
大数据·人工智能·学习
Mark_Aussie5 小时前
ADALog 日志异常检测
人工智能
Jouham5 小时前
教培获客破局:AI智能体如何重塑需求捕捉与转化新范式
人工智能