深度学习(小土堆)


使用transform

加载数据集,查看数据集的属性

将图片转换成tensor类型

python 复制代码
dataset_transform = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor()
])

train_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)
test_set = torchvision.datasets.CIFAR10(root="./dataset",train=True,transform= dataset_transform,download=True)

print(test_set[0])

将该数据的数据显示在tensorboard中
Dataloader

python 复制代码
import torchvision
from torch.utils.data import DataLoader

#准备测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor(),download=True)

test_loader = DataLoader(dataset = test_data,batch_size=4,shuffle=True,num_workers=0,drop_last=False)
#测试数据集中第一张图片集
img,target = test_data[0]
print(img.shape)
print(target)

for data in  test_loader:
    imgs,targets = data
    print(imgs.shape)
    print(targets)

出现以上问题,需要将numberworks设置为0

drop_last 当取数据有余数时,是舍去还是保留

python 复制代码
import torchvision
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

#准备测试数据集
test_data = torchvision.datasets.CIFAR10("./dataset",train=False,transform=torchvision.transforms.ToTensor())

test_loader = DataLoader(dataset = test_data,batch_size=64,shuffle=True,num_workers=0,drop_last=True)
#测试数据集中第一张图片集
img,target = test_data[0]
print(img.shape)
print(target)

writer = SummaryWriter("DataLodaer")

#shuffle 为True 两次结果不一样
for epoch in range(2):
    step = 0
    for data in  test_loader:
        imgs,targets = data
        # print(imgs.shape)
        # print(targets)
        writer.add_images("Epoch:{}".format(epoch),imgs,step)
        step = step+1

writer.close()

神经网络

相关推荐
CoovallyAIHub9 分钟前
Mamba-3震撼登场!Transformer最强挑战者再进化,已进入ICLR 2026盲审
深度学习·算法·计算机视觉
飞哥数智坊31 分钟前
一文看懂 Claude Skills:让你的 AI 按规矩高效干活
人工智能·claude
JY190641061 小时前
从点云到模型,徕卡RTC360如何搞定铝单板测量?
深度学习
IT_陈寒1 小时前
5个Java 21新特性实战技巧,让你的代码性能飙升200%!
前端·人工智能·后端
dlraba8021 小时前
YOLOv3:目标检测领域的经典之作
人工智能·yolo·目标检测
科新数智2 小时前
破解商家客服困局:真人工AI回复如何成为转型核心
人工智能·#agent #智能体
szxinmai主板定制专家4 小时前
【NI测试方案】基于ARM+FPGA的整车仿真与电池标定
arm开发·人工智能·yolo·fpga开发
ygyqinghuan5 小时前
读懂目标检测
人工智能·目标检测·目标跟踪
华东数交5 小时前
企业与国有数据资产:入表全流程管理及资产化闭环理论解析
大数据·人工智能
newxtc7 小时前
【昆明市不动产登记中心-注册安全分析报告】
人工智能·安全