机器学习中的混淆矩阵

混淆矩阵 是用于评估分类模型性能的表格,它展示了模型在不同类别上的预测情况。对于二分类问题,混淆矩阵的构成如下:

假设有两个类别:正例(Positive)和负例(Negative)。

  • 真正例(True Positive, TP): 模型++正确地预测++为正例的样本数量。
  • 真负例(True Negative, TN): 模型++正确地预测++为负例的样本数量。
  • 假正例(False Positive, FP,也称为误报): 模型++错误地++将负例预测为正例的样本数量。
  • 假负例(False Negative, FN,也称为漏报): 模型++错误地++将正例预测为负例的样本数量。

混淆矩阵的形式如下:

|-------|-------|-------|
| | 预测为正例 | 预测为负例 |
| 实际为正例 | TP | FN |
| 实际为负例 | FP | TN |

通过混淆矩阵,可以计算出多个性能指标,包括:

  1. 准确率(Accuracy): 分类正确的样本数占总样本数的比例,计算公式为 (TP + TN) / (TP + TN + FP + FN)

  2. 精确率(Precision): 正例预测正确的比例,计算公式为 TP / (TP + FP)

  3. 召回率(Recall): 实际为正例的样本中被正确预测为正例的比例,计算公式为**TP / (TP + FN)**。

  4. F1 分数(F1 Score): 精确率和召回率的调和平均数 ,计算公式为**2 * (Precision * Recall) / (Precision + Recall)**。

这些指标提供了关于分类模型性能的综合信息,可以帮助评估模型在不同方面的表现。

相关推荐
nuise_1 分钟前
李宏毅机器学习笔记06 | 鱼和熊掌可以兼得的机器学习 - 内容接宝可梦
人工智能·笔记·机器学习
声网15 分钟前
MiniMax 发布新 TTS 模型 Speech-02,轻松制作长篇有声内容;Meta 高端眼镜年底推出:售价上千美元丨日报
人工智能
HeteroCat19 分钟前
OpenAI 官方学院 -- 提示词课程要点
人工智能·chatgpt
每天做一点改变21 分钟前
AI Agent成为行业竞争新焦点:技术革新与商业重构的双重浪潮
人工智能·重构
大美B端工场-B端系统美颜师24 分钟前
定制化管理系统与通用管理系统,谁更胜一筹?
人工智能·信息可视化·数据挖掘·数据分析
生信小鹏24 分钟前
Nature旗下 | npj Digital Medicine | 图像+转录组+临床变量三合一,多模态AI预测化疗反应,值得复现学习的完整框架
人工智能·学习·免疫治疗·scrna-seq·scrna
OpenLoong 开源社区38 分钟前
技术视界 | 从哲学到技术:人形机器人感知导航的探索(下篇)
人工智能·机器人·开源社区·人形机器人·openloong
csssnxy1 小时前
叁仟数智指路机器人的主要功能有哪些?
人工智能
蝎蟹居1 小时前
GB/T 4706.1-2024 家用和类似用途电器的安全 第1部分:通用要求 与2005版差异(1)
人工智能·单片机·嵌入式硬件·物联网·安全
浊酒南街1 小时前
TensorFlow实现逻辑回归
人工智能·tensorflow·逻辑回归