机器学习中的混淆矩阵

混淆矩阵 是用于评估分类模型性能的表格,它展示了模型在不同类别上的预测情况。对于二分类问题,混淆矩阵的构成如下:

假设有两个类别:正例(Positive)和负例(Negative)。

  • 真正例(True Positive, TP): 模型++正确地预测++为正例的样本数量。
  • 真负例(True Negative, TN): 模型++正确地预测++为负例的样本数量。
  • 假正例(False Positive, FP,也称为误报): 模型++错误地++将负例预测为正例的样本数量。
  • 假负例(False Negative, FN,也称为漏报): 模型++错误地++将正例预测为负例的样本数量。

混淆矩阵的形式如下:

|-------|-------|-------|
| | 预测为正例 | 预测为负例 |
| 实际为正例 | TP | FN |
| 实际为负例 | FP | TN |

通过混淆矩阵,可以计算出多个性能指标,包括:

  1. 准确率(Accuracy): 分类正确的样本数占总样本数的比例,计算公式为 (TP + TN) / (TP + TN + FP + FN)

  2. 精确率(Precision): 正例预测正确的比例,计算公式为 TP / (TP + FP)

  3. 召回率(Recall): 实际为正例的样本中被正确预测为正例的比例,计算公式为**TP / (TP + FN)**。

  4. F1 分数(F1 Score): 精确率和召回率的调和平均数 ,计算公式为**2 * (Precision * Recall) / (Precision + Recall)**。

这些指标提供了关于分类模型性能的综合信息,可以帮助评估模型在不同方面的表现。

相关推荐
MARS_AI_3 小时前
当AI客服开始“察言观色”:以云蝠智能为例,大模型如何定义呼叫
人工智能
AI小怪兽3 小时前
基于YOLO11的航空安保与异常无人机检测系统(Python源码+数据集+Pyside6界面)
开发语言·人工智能·python·yolo·计算机视觉·无人机
_codemonster3 小时前
计算机视觉入门到实战系列(二)认识各种卷积核
人工智能·计算机视觉
KG_LLM图谱增强大模型3 小时前
颠覆传统问诊:懂医生的主动式智能预问诊多智能体系统,开启医疗AI新范式
人工智能·知识图谱·智能体
AGI_Eval3 小时前
UniHetero:在200M+大规模数据下,生成任务能否促进视觉理解?
人工智能
YuTaoShao3 小时前
【Prompt】Prompt 工程入门指南
人工智能·llm·prompt·提示词
tongxianchao3 小时前
MetaPruning: Meta Learning for Automatic Neural Network Channel Pruning
算法·机器学习·剪枝
玖日大大3 小时前
Qoder 全维度解析:AI 驱动的下一代编程生产力工具
人工智能
2301_800256113 小时前
【数据库pgsql】车辆轨迹分析视图的创建和查询代码解析
人工智能·算法·机器学习
小宇的天下3 小时前
innovus Flip chip 产品设计方法(2)
人工智能