机器学习中的混淆矩阵

混淆矩阵 是用于评估分类模型性能的表格,它展示了模型在不同类别上的预测情况。对于二分类问题,混淆矩阵的构成如下:

假设有两个类别:正例(Positive)和负例(Negative)。

  • 真正例(True Positive, TP): 模型++正确地预测++为正例的样本数量。
  • 真负例(True Negative, TN): 模型++正确地预测++为负例的样本数量。
  • 假正例(False Positive, FP,也称为误报): 模型++错误地++将负例预测为正例的样本数量。
  • 假负例(False Negative, FN,也称为漏报): 模型++错误地++将正例预测为负例的样本数量。

混淆矩阵的形式如下:

|-------|-------|-------|
| | 预测为正例 | 预测为负例 |
| 实际为正例 | TP | FN |
| 实际为负例 | FP | TN |

通过混淆矩阵,可以计算出多个性能指标,包括:

  1. 准确率(Accuracy): 分类正确的样本数占总样本数的比例,计算公式为 (TP + TN) / (TP + TN + FP + FN)

  2. 精确率(Precision): 正例预测正确的比例,计算公式为 TP / (TP + FP)

  3. 召回率(Recall): 实际为正例的样本中被正确预测为正例的比例,计算公式为**TP / (TP + FN)**。

  4. F1 分数(F1 Score): 精确率和召回率的调和平均数 ,计算公式为**2 * (Precision * Recall) / (Precision + Recall)**。

这些指标提供了关于分类模型性能的综合信息,可以帮助评估模型在不同方面的表现。

相关推荐
和鲸社区3 分钟前
《斯坦福CS336》作业1开源,从0手搓大模型|代码复现+免环境配置
人工智能·python·深度学习·计算机视觉·语言模型·自然语言处理·nlp
fanstuck5 分钟前
2025 年高教社杯全国大学生数学建模竞赛C 题 NIPT 的时点选择与胎儿的异常判定详解(一)
人工智能·目标检测·数学建模·数据挖掘·aigc
cxr8286 分钟前
Claude Code PM 深度实战指南:AI驱动的GitHub项目管理与并行协作
人工智能·驱动开发·github
THMAIL41 分钟前
深度学习从入门到精通 - LSTM与GRU深度剖析:破解长序列记忆遗忘困境
人工智能·python·深度学习·算法·机器学习·逻辑回归·lstm
fFee-ops42 分钟前
73. 矩阵置零
线性代数·矩阵
Gyoku Mint44 分钟前
NLP×第六卷:她给记忆加了筛子——LSTM与GRU的贴靠机制
人工智能·深度学习·神经网络·语言模型·自然语言处理·gru·lstm
悠哉悠哉愿意1 小时前
【数学建模学习笔记】机器学习分类:随机森林分类
学习·机器学习·数学建模
玉木子1 小时前
机器学习(七)决策树-分类
决策树·机器学习·分类
YF云飞2 小时前
数据仓库进化:Agent驱动数智化新范式
数据仓库·人工智能·ai
悠哉悠哉愿意2 小时前
【数学建模学习笔记】机器学习分类:KNN分类
学习·机器学习·数学建模