机器学习中的混淆矩阵

混淆矩阵 是用于评估分类模型性能的表格,它展示了模型在不同类别上的预测情况。对于二分类问题,混淆矩阵的构成如下:

假设有两个类别:正例(Positive)和负例(Negative)。

  • 真正例(True Positive, TP): 模型++正确地预测++为正例的样本数量。
  • 真负例(True Negative, TN): 模型++正确地预测++为负例的样本数量。
  • 假正例(False Positive, FP,也称为误报): 模型++错误地++将负例预测为正例的样本数量。
  • 假负例(False Negative, FN,也称为漏报): 模型++错误地++将正例预测为负例的样本数量。

混淆矩阵的形式如下:

|-------|-------|-------|
| | 预测为正例 | 预测为负例 |
| 实际为正例 | TP | FN |
| 实际为负例 | FP | TN |

通过混淆矩阵,可以计算出多个性能指标,包括:

  1. 准确率(Accuracy): 分类正确的样本数占总样本数的比例,计算公式为 (TP + TN) / (TP + TN + FP + FN)

  2. 精确率(Precision): 正例预测正确的比例,计算公式为 TP / (TP + FP)

  3. 召回率(Recall): 实际为正例的样本中被正确预测为正例的比例,计算公式为**TP / (TP + FN)**。

  4. F1 分数(F1 Score): 精确率和召回率的调和平均数 ,计算公式为**2 * (Precision * Recall) / (Precision + Recall)**。

这些指标提供了关于分类模型性能的综合信息,可以帮助评估模型在不同方面的表现。

相关推荐
~kiss~5 分钟前
K-means损失函数-收敛证明
算法·机器学习·kmeans
大模型真好玩11 分钟前
低代码Agent开发框架使用指南(一)—主流开发框架对比介绍
人工智能·低代码·agent
tzc_fly23 分钟前
AI作为操作系统已经不能阻挡了,尽管它还没来
人工智能·chatgpt
PKNLP34 分钟前
深度学习之神经网络1(Neural Network)
人工智能·深度学习·神经网络
文火冰糖的硅基工坊2 小时前
《投资-99》价值投资者的认知升级与交易规则重构 - 什么是周期性股票?有哪些周期性股票?不同周期性股票的周期多少?周期性股票的买入和卖出的特点?
大数据·人工智能·重构·架构·投资·投机
Elastic 中国社区官方博客2 小时前
Elasticsearch:使用推理端点及语义搜索演示
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
AI新兵2 小时前
深度学习基础:从原理到实践——第一章感知机(中)
人工智能·深度学习
生物小卡拉2 小时前
R脚本--表达矩阵与特征矩阵相关性分析
笔记·学习·机器学习
liliangcsdn2 小时前
从LLM角度学习和了解MoE架构
人工智能·学习·transformer
ARM+FPGA+AI工业主板定制专家2 小时前
基于ZYNQ FPGA+AI+ARM 的卷积神经网络加速器设计
人工智能·fpga开发·cnn·无人机·rk3588