机器学习中的混淆矩阵

混淆矩阵 是用于评估分类模型性能的表格,它展示了模型在不同类别上的预测情况。对于二分类问题,混淆矩阵的构成如下:

假设有两个类别:正例(Positive)和负例(Negative)。

  • 真正例(True Positive, TP): 模型++正确地预测++为正例的样本数量。
  • 真负例(True Negative, TN): 模型++正确地预测++为负例的样本数量。
  • 假正例(False Positive, FP,也称为误报): 模型++错误地++将负例预测为正例的样本数量。
  • 假负例(False Negative, FN,也称为漏报): 模型++错误地++将正例预测为负例的样本数量。

混淆矩阵的形式如下:

|-------|-------|-------|
| | 预测为正例 | 预测为负例 |
| 实际为正例 | TP | FN |
| 实际为负例 | FP | TN |

通过混淆矩阵,可以计算出多个性能指标,包括:

  1. 准确率(Accuracy): 分类正确的样本数占总样本数的比例,计算公式为 (TP + TN) / (TP + TN + FP + FN)

  2. 精确率(Precision): 正例预测正确的比例,计算公式为 TP / (TP + FP)

  3. 召回率(Recall): 实际为正例的样本中被正确预测为正例的比例,计算公式为**TP / (TP + FN)**。

  4. F1 分数(F1 Score): 精确率和召回率的调和平均数 ,计算公式为**2 * (Precision * Recall) / (Precision + Recall)**。

这些指标提供了关于分类模型性能的综合信息,可以帮助评估模型在不同方面的表现。

相关推荐
碣石潇湘无限路9 分钟前
【AI篇】当Transformer模型开始学习《孙子兵法》
人工智能·学习
看到我,请让我去学习20 分钟前
OpenCV开发-初始概念
人工智能·opencv·计算机视觉
汀沿河20 分钟前
8.1 prefix Tunning与Prompt Tunning模型微调方法
linux·运维·服务器·人工智能
陈敬雷-充电了么-CEO兼CTO29 分钟前
大模型技术原理 - 基于Transformer的预训练语言模型
人工智能·深度学习·语言模型·自然语言处理·chatgpt·aigc·transformer
学术 学术 Fun36 分钟前
✨ OpenAudio S1:影视级文本转语音与语音克隆Mac整合包
人工智能·语音识别
风铃喵游1 小时前
让大模型调用MCP服务变得超级简单
前端·人工智能
booooooty2 小时前
基于Spring AI Alibaba的多智能体RAG应用
java·人工智能·spring·多智能体·rag·spring ai·ai alibaba
PyAIExplorer2 小时前
基于 OpenCV 的图像 ROI 切割实现
人工智能·opencv·计算机视觉
风口猪炒股指标2 小时前
技术分析、超短线打板模式与情绪周期理论,在市场共识的形成、分歧、瓦解过程中缘起性空的理解
人工智能·博弈论·群体博弈·人生哲学·自我引导觉醒
ai_xiaogui3 小时前
一键部署AI工具!用AIStarter快速安装ComfyUI与Stable Diffusion
人工智能·stable diffusion·部署ai工具·ai应用市场教程·sd快速部署·comfyui一键安装