Flink 常用物理分区算子(Physical Partitioning)

在Flink中,常见的物理分区策略有:随机分配(Random)、轮询分配(Round-Robin)、重缩放(Rescale)和广播(Broadcast)。

接下来,我们通过源码和Demo分别了解每种物理分区算子的作用和区别。

(1) 随机分区(shuffle)

最简单的重分区方式就是直接"洗牌"。通过调用 DataStream 的.shuffle()方法,将数据随机地分配到下游算子的并行任务中去。

随机分区服从均匀分布(uniform distribution),所以可以把流中的数据随机打乱,均匀地传递到下游任务分区。因为是完全随机的,所以对于同样的输入数据, 每次执行得到的结果也不会相同。

经过随机分区之后,得到的依然是一个 DataStream。

我们可以做个简单测试:将数据读入之后直接打印到控制台,将输出的并行度设置为 2,

中间经历一次 shuffle。执行多次,观察结果是否相同。

java 复制代码
package com.flink.DataStream.PhysicalPartitioning;

import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

/**
 * flink 常用物理分区算子-shuffle:随机分区-洗牌
 */
public class flinkShuffle {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment
                .getExecutionEnvironment();

        streamExecutionEnvironment.setParallelism(2);

        DataStreamSource<String> socketDataStreamSource = streamExecutionEnvironment.socketTextStream("localhost", 8888);

        // TODO 随机分区
        socketDataStreamSource.shuffle().print();
        // TODO 轮询分区
        //socketDataStreamSource.rebalance().print();
        // TODO 重缩放分区
        //socketDataStreamSource.rescale().print();
        // TODO 广播
        //socketDataStreamSource.broadcast().print();
        // TODO 全局分区
        //socketDataStreamSource.global().print();

        streamExecutionEnvironment.execute();
    }
}

查看执行结果

复制代码
  2> 1
  2> 2
  1> 3
  
  1> 1
  1> 2
  2> 3

在上述实验中,我们设置全局env的并行度为2,尝试执行2次job,发现2次执行的结果不一致,因为shuffle的完全随机性,将输入流分配到不同的分区中,且每次分配可能不一样。

(2) 轮询分区(Round-Robin)

轮询,简单来说就是"发牌",按照先后顺序将数据做依次分发。通过调用 DataStream的.rebalance()方法,就可以实现轮询重分区。

rebalance 使用的是 Round-Robin 负载均衡算法,可以将输入流数据平均分配到下游的并行任务中去。

java 复制代码
stream.reblance()
java 复制代码
设置全局env的并行度为2,尝试执行3次job,发现3次执行的结果一致
1> 1
2> 2

1> 1
2> 2

1> 1
2> 2

1> 1
2> 2

(3) 重缩放分区(rescale)

重缩放分区和轮询分区非常相似。当调用 rescale()方法时,其实底层也是使用 Round-Robin 算法进行轮询,但是只会将数据轮询发送到下游并行任务的一部分中。

rescale 的做法是分成小团体,发牌人只给自己团体内的所有人轮流发牌。

java 复制代码
stream.rescale()
java 复制代码
设置全局env的并行度为2,尝试执行3次job,发现3次执行的结果一致
1> 1
2> 2

1> 1
2> 2

1> 1
2> 2

1> 1
2> 2

(4) 广播(broadcast)

这种方式其实不应该叫做"重分区",因为经过广播之后,数据会在不同的分区都保留一份,可能进行重复处理。

可以通过调用 DataStream 的 broadcast()方法,将输入数据复制并发送到下游算子的所有并行任务中去。

java 复制代码
stream.broadcast()
java 复制代码
将输入数据复制并发送到下游算子的所有并行任务中去
2> 1
1> 1

2> 2
1> 2

(5) 全局分区(global)

全局分区也是一种特殊的分区方式。这种做法非常极端,通过调用.global()方法,会将所有的输入流数据都发送到下游算子的第一个并行子任务中去。

这就相当于强行让下游任务并行度变成了1,所以使用这个操作需要非常谨慎,可能对程序造成很大的压力。

java 复制代码
stream.global()
java 复制代码
将所有的输入流数据都发送到下游算子的第一个并行子任务中去
强行让下游任务并行度变成了1,即使你并行度设置为了2
1> 1
1> 2

1> 1
1> 2

1> 1
1> 2
相关推荐
Jackeyzhe9 小时前
Flink源码阅读:集群启动
flink
面向Google编程9 小时前
Flink源码阅读:Watermark机制
大数据·flink
Hello.Reader9 小时前
Flink SQL DELETE 语句批模式行级删除、连接器能力要求与实战避坑(含 Java 示例)
java·sql·flink
Elastic 中国社区官方博客12 小时前
让我们把这个 expense 工具从 n8n 迁移到 Elastic One Workflow
大数据·运维·elasticsearch·搜索引擎·ai·信息可视化·全文检索
邮一朵向日葵14 小时前
企查查开放平台MCP:为AI智能体注入精准商业数据,驱动智能决策新时代
大数据·人工智能
沃达德软件14 小时前
智能警务视频侦查系统
大数据·人工智能·数据挖掘·数据分析·实时音视频·视频编解码
湘-枫叶情缘15 小时前
“智律提效”AI数字化运营落地项目可行性方案
大数据·人工智能·产品运营
Blossom.11816 小时前
大模型推理优化实战:连续批处理与PagedAttention性能提升300%
大数据·人工智能·python·神经网络·算法·机器学习·php
F36_9_17 小时前
数字化项目管理系统分享:7款助力企业实现项目智能化协同的工具精选
大数据
qq_124987075317 小时前
基于协同过滤算法的在线教育资源推荐平台的设计与实现(源码+论文+部署+安装)
java·大数据·人工智能·spring boot·spring·毕业设计