python 如何调用GPT系列的api接口,实现想要的功能

目录

问题描述:

问题解决:


问题描述:

随着各种LLMs (Large Language Models)的出现,如何调用各种LLMs的api成为了经常会遇见的问题。

问题解决:

下面仅以生成给定sentence的复述句为例,说明如何应用。

data: 存放在.txt文件中,按行存放,每一行是一个句子

⚠️: 只能在本地运行,不可以在服务器上运行,并且,🪜要打开。

代码实现:

python 复制代码
import openai
import time
import os
import random 

from tqdm import tqdm
# openai.api_key = "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"
# openai.api_key = "sk-huUlpXTcDnvNevXgB1399aCa9dB247F599D81737B7CfD927" # 实验室共有


openai.api_key = "YOUR API KEY" # GPT4.0
openai.api_base = 'https://api.ngapi.top/v1'

def get_response(prompt, temperature=0.5, max_tokens=2048):
  completion = openai.ChatCompletion.create(
    # model="gpt-3.5-turbo",
    model="gpt-4",
    temperature=0,
    top_p=0,
    # max_tokens=max_tokens,
    messages=[
      {"role": "user", "content": f"{prompt}"}
    ]
  )
  return completion
  
python 复制代码
def generate_prompt(all_sentences): # all_asps是一个list

    prompts = []
    for cur_sent in all_sentences: # all_compared_pair是一个list:[asp,sub,obj]
        # prompt = "Please generate just one synonymous sentence for the given sentence. The current given sentence is : '{}'".format(cur_sent)
        prompt = f"Generate a paraphrased version of the following sentence: {cur_sent}"
        prompts.append(prompt)
    return prompts
python 复制代码
import re

def process_sentence(sentence):
    # 定义要添加空格的特殊字符, 比如's
    special_chars = [',', '.', '\'', ''', '"', '"', '(', ')', '[', ']', '{', '}', ':', ';', '?', '!'] # '-', 因为sub,obj中存在很多以'-'为连字符的sub,obj,所以原始句子中,这部分不可以加空格
    # 在特殊字符前添加空格
    for char in special_chars:
        if char == '(': # 特别的,左括号是在后面加空格
            sentence = sentence = re.sub(rf'([{char}])', r'\1 ', sentence)
        else:
            sentence = re.sub(rf'([{char}])', r' \1', sentence)
    return sentence

def get_res(all_sentences, wirte_path):

    if os.path.exists(wirte_path):
        res_file = open(wirte_path)
        begin = len(res_file.readlines()) + 1 # 断点续传
        res_file.close()
    else:
        begin = 0
    
    with open(wirte_path, 'a', buffering=1) as res_file:
        count = 0
        for p in tqdm(generate_prompt(all_sentences), total=len(all_sentences)):
            print(p)
            count += 1
            if count < begin:
                continue
            try:
                res = get_response(p)['choices'][0]['message']['content']
                # print("res", res)
                processed_res = process_sentence(res) # 处理成以单词,标点符号等为分隔符,空格
                # print("processed_res", processed_res)
                if "The server is overloaded or not ready yet" in processed_res:
                    time.sleep(30)
                    res_file.write("####" + '\n')
                    
                else:
                    res_file.write(processed_res + '\n')
            except Exception as e:
                if isinstance(e, openai.error.RateLimitError):
                    time.sleep(30)      # 处理拥挤的函数,就只是睡着而已
                    res = get_response(p)['choices'][0]['message']['content']
                    processed_res = process_sentence(res) # 
                    res_file.write(processed_res + '\n')
                else:
                    print(e)
                    exit(-1)
        # print("the number of prompt is :", count)
python 复制代码
from pdb import set_trace as stop


dataset_list = ['14lap','14res', '15res', '16res']
name_list = ['train', 'test', 'dev']

# name_list = ['dev']
# dataset_list = ['14lap']

for dataset in dataset_list:
    for name in name_list:
        # print("dataste", dataset)
        # print("name", name)
        sentence_path = f"/Users/qtxu/Workplace/Chatgpt/ATE_Task/{dataset}/{name}_sentence.txt"
        write_path = f'/Users/qtxu/Workplace/Chatgpt/ATE_Task/{dataset}/{name}_paraphrase_sentence.txt'

        with open(sentence_path,"r") as fr:
            lines = fr.readlines()
            all_sentences = []
            for line in lines:
                all_sentences.append(line)
        # print("all_sentences", all_sentences)
        get_res(all_sentences, write_path)
相关推荐
心情好的小球藻18 分钟前
Python应用进阶DAY9--类型注解Type Hinting
开发语言·python
都叫我大帅哥20 分钟前
LangChain加载HTML内容全攻略:从入门到精通
python·langchain
惜.己30 分钟前
使用python读取json数据,简单的处理成元组数组
开发语言·python·测试工具·json
都叫我大帅哥2 小时前
Python的Optional:让你的代码优雅处理“空值”危机
python
曾几何时`4 小时前
基于python和neo4j构建知识图谱医药问答系统
python·知识图谱·neo4j
写写闲篇儿6 小时前
Python+MongoDB高效开发组合
linux·python·mongodb
杭州杭州杭州7 小时前
Python笔记
开发语言·笔记·python
路人蛃9 小时前
通过国内扣子(Coze)搭建智能体并接入discord机器人
人工智能·python·ubuntu·ai·aigc·个人开发
Mr.小海9 小时前
常用 Benchmark 总结-GPT 4.1、GPT 4.5、DeepSeek模型
gpt
joe02359 小时前
电脑安装 Win10 提示无法在当前分区上安装Windows的解决办法
windows·gpt·电脑·uefi