python-opencv轮廓检测(外轮廓检测和全部轮廓检测,计算轮廓面积和周长)

python-opencv轮廓检测(外轮廓检测和全部轮廓检测,计算轮廓面积和周长)

通过cv2.findContours,我们可以进行轮廓检测,当然也有很多检测模式,我们可以通过选择检测模式,进行外轮廓检测,或者全部轮廓检测等等,可以实现不同的需求。

另外opencv也封装了计算轮廓面积和周长的函数,注意,轮廓基本上都是点组成的,也就是说,我们可以通过opencv封装的函数计算一堆点集的周长和面积。

print(cv2.contourArea(cnt))#输出面接

print(cv2.arcLength(cnt,True))#True闭合的周长,输出周长

cnt为轮廓点集,这个函数,以后博主觉得是有很大实用效果的。

代码如下:

python 复制代码
from ctypes.wintypes import SIZE
from multiprocessing.pool import IMapUnorderedIterator
import cv2
import copy
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np
import os

path=r'D:\learn\photo\cv\contours.png'

img=cv2.imread(path,1)

img_gray=cv2.imread(path,0)



def cv_show(name,img):
    cv2.imshow(name,img)
    #cv2.waitKey(0),接收0,表示窗口暂停
    cv2.waitKey(0)
    #销毁所有窗口
    cv2.destroyAllWindows()


#cv_show('img_gray',img_gray)



#进行二值化处理
ret,binary=cv2.threshold(img_gray,127,255,cv2.THRESH_BINARY)


#cv_show('dist',dist)

def BGR_TO_RGB(img):
    return img[:,:, ::-1]
#检测轮廓

#取值一:CV_RETR_EXTERNAL只检测最外围轮廓,包含在外围轮廓内的内围轮廓被忽略


#           取值二:CV_RETR_LIST   检测所有的轮廓,包括内围、外围轮廓,但是检测到的轮廓不建立等级关

#                  系,彼此之间独立,没有等级关系,这就意味着这个检索模式下不存在父轮廓或内嵌轮廓,

#                  所以hierarchy向量内所有元素的第3、第4个分量都会被置为-1,具体下文会讲到


#           取值三:CV_RETR_CCOMP  检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围

#                  内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层


#           取值四:CV_RETR_TREE, 检测所有轮廓,所有轮廓建立一个等级树结构。外层轮廓包含内层轮廓,内

#                   层轮廓还可以继续包含内嵌轮廓。

#countourClose 轮廓坐标信息
#hierrachyclose 轮廓之间的层次结构


   
countourClose,hierrachyclose=cv2.findContours(binary,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_SIMPLE)


result2=cv2.drawContours(img.copy(),countourClose,-1,(0,0,255),2)

#CV_RETR_CCOMP  检测所有的轮廓,但所有轮廓只建立两个等级关系,外围为顶层,若外围

#                  内的内围轮廓还包含了其他的轮廓信息,则内围内的所有轮廓均归属于顶层
   
countourClose,hierrachyclose=cv2.findContours(binary,cv2.RETR_CCOMP,cv2.CHAIN_APPROX_SIMPLE)


result3=cv2.drawContours(img.copy(),countourClose,-1,(0,0,255),2)


countourClose,hierrachyclose=cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)

result=cv2.drawContours(img.copy(),countourClose,-1,(0,0,255),2)

print("len(countourclose) is",len(countourClose))

    #

plt.figure(figsize=(400,600))




print(img_gray.shape)
print(img_gray[0][0])
plt.subplot(221)
#img_gray=BGR_TO_RGB(img_gray,'gray')
plt.imshow(img_gray,'gray')
plt.title('img_gray')


plt.subplot(222)

plt.imshow(result,'gray')

plt.title('RETR_TREE')

plt.subplot(223)

plt.imshow(result2,'gray')

plt.title('RETR_EXTERNAL')
plt.subplot(224)

plt.imshow(result3,'gray')

plt.title('RETR_CCOMP')
plt.show()

#输出面接和周长


for  i in range(len(countourClose)):
     cnt=countourClose[i]
     print(cv2.contourArea(cnt))#输出面接
     print(cv2.arcLength(cnt,True))#True闭合的周长,输出周长



     


os.system("pause")

运行结果如下:


相关推荐
路边草随风几秒前
llama_index简单使用
人工智能·python·llama
Q_Q511008285几秒前
python+springboot+django/flask基于深度学习的旅游推荐系统
spring boot·python·django·flask·node.js·php
梨落秋霜1 分钟前
Python入门篇【if判断语句】
android·java·python
宝贝儿好2 分钟前
【强化学习】第二章:老虎机问题、ε-greedy算法、指数移动平均
人工智能·python·算法
kkk_皮蛋3 分钟前
深入理解 WebRTC 临界锁实现与 C++ RAII 机制
开发语言·c++·webrtc
i_am_a_div_日积月累_4 分钟前
el-table实现自动滚动;列表自动滚动
开发语言·javascript·vue.js
闲人编程5 分钟前
Flask-SQLAlchemy高级用法:关系建模与复杂查询
后端·python·flask·一对多·多对多·一对一·自引用
2401_841495645 分钟前
【自然语言处理】自然语言理解的分层处理机制与程序语言编译器的对比研究
人工智能·python·深度学习·自然语言处理·自然语言理解·分层处理机制·程序语言编译器
阿桂天山8 分钟前
阿桂的数据资产灵动实战 (一) 开发框架
大数据·python·软件工程
weixin_3077791310 分钟前
Jenkins Jackson 2 API插件详解:JSON处理的基础支柱
运维·开发语言·架构·json·jenkins