AI开发者减少OpenAI,转向更多语言模型

继OpenAI最近的争议后,AI工程师和公司开始减少乃至完全摆脱对其API的依赖。

译自Pivot! AI Devs Move to Switch LLMs, Reduce OpenAI Dependency,作者 Richard MacManus 是 The New Stack 的高级编辑,并撰写有关 Web 和应用程序开发趋势的文章。此前,他于 2003 年创立了 ReadWriteWeb,并将其打造成为世界上最有影响力的技术新闻网站之一。从早期开始...

无论过去几天围绕 OpenAI 的剧情如何发展,有一件事是清楚的:那些依赖 OpenAI API 构建的创业公司现在正在重新思考他们的策略。正如 Shawn "swyx" Wang 在剧情泄露到新闻后不久所指出的那样,"99% 的 AI 工程师的工作以 OpenAI 模型开始,可能也将以 OpenAI 模型结束。" 但是现在,Wang 警告说,"OpenAI 霸权的日子结束了。"

人们预计 OpenAI 的竞争对手,如 Anthropic 和 Google,将从中受益;开源 LLM 如 Meta 的 Llama 2 也是如此。但这种动荡也会渗透到第三方工具中。例如,Swyx 认为,"相对来说,像 LangChain 和 LlamaIndex 这样与模型无关的工具,以及模型路由器和网关,将更有价值。"

归根结底,最大的教训是一个熟悉的教训:不要让你的工作项目或创业公司依赖于另一家公司的技术。这是 Twitter 开发人员早在 2012 年(然后在十年后重新学习)就吃到了苦头的事情。

直到上周,AI 工程师们普遍认为 OpenAI 的 LLM 优于所有其他 LLM。今年有人谈论开源模型正在赶上。Meta 在 7 月宣布的 Llama 2 目前领先于斯坦福大学的 HELM(语言模型整体评估)基准排行榜。然而,OpenAI 最新的模型(GPT-4 及以上)还没有被 HELM 评估------感觉是 GPT 仍然是最好的。

OpenAI 的开发者体验也很难打败,主要是因为你不需要自己训练或微调 LLM。你只需要使用 OpenAI 的 API,然后在它上面做提示工程,在如 LangChain 这样的工具帮助下。

总的来说,使用 OpenAI 的 API 一直被视为 AI 工程最高效、最简单的方法。然而,过去几天的闹剧生动地展示了依赖一家公司 API 的风险。所以,许多 AI 初创公司现在可能会决定,拥有对 LLM 的直接访问权限(特别是如果它们是开源的)才是更好的选择。

评估替代方案

非 OpenAI 的供应商已经站出来帮助创业公司测试替代方案。AnyScale 的 Robert Nishihara最近在 X(原 Twitter)上写道:

"如果你想要并排比较 OpenAI 和开源模型(Llama 2、Mistral、Zephyr 等),请查看 Anyscale Endpoints。我们提供兼容 OpenAI 的 API(用于推理和微调)。"

即使创业公司决定继续使用 OpenAI 目前市场领先的 GPT 模型,它们也可能决定从 OpenAI 更稳定的合作伙伴那里为它们提供服务:Microsoft。一家名为 Sardine 的 AI 创业公司的创始人兼 CEO Soups Ranjan 在 X 上评论说:"许多公司可能已经将他们的模型服务直接迁移到了 Microsoft 的 Azure AI API。"的确,Ranjan 证实他的公司就是这么做的。

Ranjan 还建议 AI 创业公司应该通过"跨多个模型编排------如 Google 的 PaLM、Anthropic 的 Claude2 或开源模型 Llama"来使其 LLM 多样化。

然而,Ranjan 警告说,开源不是简单的选择,你需要一个坚实的后端来使其工作。他在 X 上写道:"不要低估 OpenAI 或 Azure 或 Google Cloud 的超级力量------他们拥有世界级的服务基础设施,可以托管这些需要大量 RAM 或定制 GPU 芯片(如英伟达 A100 或 H100)的大型语言模型,而这些芯片供应非常紧张。"

但最终它可能是值得的。Ranjan 总结说:"控制你的模型,控制你的命运。"

执行 AI 转型

在 LinkedIn 上,AI 创业家 Aishwarya (AG) Goel 写了一篇指南,介绍如何让你的创业公司摆脱 OpenAI,转向Hugging Face 的开源工具。她概述了如何在该平台上找到模型,使用 Hugging Face 的推理 API 对其进行测试,进行成本分析,并考虑"无服务器部署选项"(她自己的公司提供该服务)。

但要当心,更改 LLM 提供商有隐藏的危险。LangChain 是 OpenAI 的重要合作伙伴,可能是除 OpenAI 自身之外使用最广泛的AI 工程工具,它在一条推文中写道:"不同的 LLM 通常需要不同的提示策略。"

LangChain 补充说:"切换 API 端点通常是简单的部分。难点是让一个 LLM 的表现与另一个 LLM 类似。让单个 LLM 表现良好就已经够难的了!"

该公司说目前没有"很好的选择"来做到这一点,但它建议开发人员使用其自己的LangSmith Prompt Hub来测试"适用于你正在使用的模型的提示示例"。

是时候扩展业务了

在撰写本文时(美国太平洋时间周三凌晨早些时候),OpenAI 剧情的最新消息是 Sam Altman 将回任 CEO,并且最终不会加入 Microsoft。如果那确实发生了,许多 AI 工程师和 AI 创业公司将舒了一口气。但他们不应忘记这里的基本教训:不要依赖一家公司来运行你的产品!

其中一位已经开始测试 OpenAI 替代方案的工程师是 Redis 的创造者 Salvatore Sanfilippo(也称为 @antirez)。在一条推文中承认他喜欢 ChatGPT 后,他写道:"如果你的产品使用了 OpenAI API,而你没有尝试这个任务是否可以由微调(通过 LoRa 或其他方式)的 Mistral 7B 来处理......嗯,在这种情况下,你真的错过了一些东西。"

如果 Redis 的创造者正在考虑其他选择------在他的例子中是一个名为Mistral 7B的新的开源 LLM------那么你也许也应该这么做。

相关推荐
weyson39 分钟前
CSharp OpenAI
人工智能·语言模型·chatgpt·openai
bytebeats2 天前
我用 Spring AI 集成 OpenAI ChatGPT API 创建了一个 Spring Boot 小程序
spring boot·chatgpt·openai
DisonTangor3 天前
OpenAI 发布了新的事实性基准——SimpleQA
人工智能·openai
开发者每周简报5 天前
OpenAI推出搜索GPT,进军搜索引擎领域
人工智能·gpt·搜索引擎·ai·chatgpt·openai
Code_Artist6 天前
LangChain For Go:简化AI应用开发,极速构建LLM应用程序!
gpt·llm·openai
量子位6 天前
o1 满血版泄露!奥数题图片推理手拿把掐,奥特曼上线剧透 o2
人工智能·openai
戴着眼镜看不清10 天前
GPT避坑指南:如何辨别逆向、AZ、OpenAI官转
gpt·openai·azure·通义千问·api中转
量子位15 天前
LeCun 锐评诺奖:出于压力才颁给 AI,但两个成果已经完全无用,玻尔兹曼机和 Hopefield 网络
人工智能·openai
孟健16 天前
深度剖析Claude 3.5新能力: 实现优雅,效果惊艳!
人工智能·openai·claude
z千鑫16 天前
【OpenAI】第六节(语音生成与语音识别技术)从 ChatGPT 到 Whisper 的全方位指南
人工智能·chatgpt·whisper·gpt-3·openai·语音识别·codemoss能用ai