中科大蒋彬课题组开发 FIREANN,分析原子对外界场的响应

内容一览: 使用传统方法分析化学系统与外场的相互作用,具有效率低、成本高等劣势。中国科学技术大学的蒋彬课题组,在原子环境的描述中引入了场相关特征,开发了 FIREANN,借助机器学习对系统的场相关性进行了很好的描述。

关键词: 化学物理学 分子动力学 外界场

作者 | 雪菜

编辑 | 李宝珠

化学系统与外场的相互作用在物理、化学及生物过程中至关重要。以电场为主的外场可以与原子、分子和凝聚态物质相互作用,导致电子或自旋极化,或是改变系统的空间取向。

密度泛函理论 (DFT) 和从头算分子动力学 (AIMD) 已被用于研究外加电场下的复杂周期和非周期系统。然而,AIMD 的应用要求很高,尤其是在核量子效应 (NQEs) 比较重要的系统中很难使用。

经验力场分析效率很高,但准确率有限,而精确的场相关量子散射计算只适用于非常小的系统

与此同时,机器学习 (ML) 在解决高维化学问题中取得了不俗的成果。然而,大多数机器学习模型将势能和系统对电场的响应分割看待,忽略了系统的场相关性。

为此,中国科学技术大学的蒋彬课题组,在原子环境的描述中引入了场相关特征,开发了场诱导递归嵌入原子神经网络 (FIREANN) 。FIREANN 不仅可以准确描述外场强度和方向的变化时,系统能量的变化趋势,还能对任意阶数的系统响应进行预测。这一成果已发表于「Nature Communication」。

这一成果已发表于「Nature Communication」

论文链接:

www.nature.com/articles/s4...

FIREANN 模型链接:

github.com/zhangylch/F...

关注公众号,后台回复「相互作用」获取论文完整 PDF

FIREANN:REANN + 伪原子场向量

FIREANN 的基础是 REANN 模型,后者通过嵌入原子密度 (EADs) 对原子环境进行描述。外加场时,电子密度会重新分布,系统的旋转不变性也会被破坏。系统和外场的相互作用显然会受到电场强度和方向的影响。

FIREANN 的架构

FIREANN 会为每个原子赋一个模拟真实原子行为的伪原子场向量,随后二者结合得到场相关嵌入原子密度,作为神经网络的输入,最终输出原子力、偶极矩、极化率等物理量。

每个原子的伪原子场向量可以表示为:

随后,将场相关轨道和高斯轨道 (GTOs) 组合成场诱导 EADs (FI-EAD) 矢量

这里,每个原子受到的外加场由伪原子相对于该原子的位置矢量表示。FI-EAD 便可以由原子间距离和封闭角重写:

实验验证

玩具模型 :水分子的精准预测和外推

研究人员首先以水分子作为玩具模型 (Toy System) ,验证 FIREANN 对系统-外场相互作用的预测。在 yz 面上有一个水分子,x 方向上有强度为 0.1 V/Å 的电场。

由于外场和分子平面始终正交,分子的势能不会发生变化。FIREANN 准确预测到了这一结果。

同时,FIREANN 对分子沿 y 轴旋转时的偶极-电场相互作用进行了精准预测

FIREANN 对 yz 面水分子受外界电场影响的预测

a:水分子沿 x 轴旋转的情况;

b:水分子沿 y 轴旋转的情况;

c:电场强度变化时 DFT、FIREANN 和 FieldSchNet 的预测结果。

FIREANN 还有很强的外推能力,仅用单一的训练数据,便推理得到了电场强度在 -0.2-0.2 V/Å 时,分子势能的变化。这是传统的 FieldSchNet 模型做不到的。

NMA :IR 光谱的准确预测

FIREANN 的一个典型特征就是,它可以一步预测化学系统在有无外场时的能量和响应特性

研究人员在 N-甲基乙酰胺 (NMA) 上进行了测试。当外界电场在 0.0-0.4 V/Å 变化时,FIREANN 能够对 NMA 分子的能量、偶极矩和极化率进行有效预测,均方根误差 (RMSEs) 分别为 0.0053 eV、0.028 Debye 和 0.51 a.u

FIREANN 和 DFT 对 NMA 的能量 (a)、偶极矩 (b) 和极化率 (c) 的预测相关性图

FIREANN 还对场内的分子光谱进行了预测。当电场强度以 0.1 V/Å 的步长逐渐从 0.0 增加至 0.4 V/Å 时,C-O 伸缩带的变化最为明显。随着电场强度增加,C-O 伸缩带的 P/R 分支逐渐消失,吸收峰变得更加尖锐。

此外,FIREANN 还预测,外加电场会降低化学键的强度,导致 CO 的拉伸振动红移,距离与电场强度成正比。

300 K 下 NMA 在不同强度电场下的 FIREANN 预测结果

液态水 :周期系统的高度吻合

为验证 FIREANN 模型预测周期系统对外加电场响应的能力,研究人员在液态水中进行了测试。与分子系统不同,周期系统的极化强度 (单位体积的偶极矩) 是一个多值量,导致其存在多个平行分支,引起偶极矩的突变。

AIMD 预测中我们可以清楚地看到偶极矩的突变带来的结果的不连续,在外加电场之后,这种突变会更加频繁,这为传统的机器学习算法带来了挑战。

AIMD、修正后的 AIMD 和 FIREANN 对无场 (a) 和有场 (b) 时液态水的偶极矩分析

而在 FIREANN 框架中,由于模型只在有电场的情况下进行了原子力的训练,系统的能量梯度其实是不受影响的,因此轻松绕过了这一问题。

为此,研究人员构建了一个包含 64 个水分子,x 方向上电场强度 0.6 V/Å 的模型,以原子力作为唯一的预测对象,称为 FIREANN-wF。模型对原子力的预测与实验高度一致,均方根误差仅 39.4 meV/Å

FIREANN-wF 对液态水的无场径向分布函数 (RDFs) 的预测与 DFT 和实验结果也是吻合的。

FIREANN 对 O-O (a)、O-H (b) 和 H-H (c) 的径向分布函数的预测,及与实验结果的对比

偶极矩对于 IR 谱具有重要影响。由于 FIREANN-wF 模型会对核量子效应进行分析,它能够对势能面 (PES) 和偶极矩面进行正确的预测,与 DFT 的结果一致

随后,利用 FIREANN-wF 对外加 0.4 V/Å 后的 IR 谱进行预测。由于电场降低了 O-H 键的强度,同时诱导水分子重定向与电场平行,光谱中 O-H 伸缩带出现了明显的红移。

FIREANN 对无场 (a) 和有场 (b) 情况下液态水的光谱预测及与实验结果的对比

对比 REANN :外推能力与高速训练

虽然此前已有与 FIREANN-wF 训练方式类似的模型,然而它们对外场的处理方式完全不同,导致这些模型无法对高阶的相互作用进行预测

而在 FIREANN 中,引入场相关原子轨道后,模型可以通过轨道间的相互作用捕获电子密度对外场的响应

前文已经对比过 FIREANN 和 FieldSchNet 在水分子中的差异,这一差异在周期系统中依然存在。

研究人员利用水分子和 x 方向的电场建立了测试体系。FIREANN 和 FieldSchNet 的预测均方根误差分别为 54.5 meV/Å 和 245.4 meV/Å。与之前的结果类似,FIREANN 可以将预测外推到 ±2 V/Å,而 FieldSchNet 不具备这一能力

DFT、FIREANN 和 FieldSchNet 对液态水体系能量在电场变化时的外推结果

训练时间上看,在单张显存为 80 GB 的 A100 上, FieldSchNet 的单个 epoch 为7.6 分钟,而 FIREANN 仅用 2.4 分钟

分子-场相互作用:微观系统的遥控器

化学系统和外场的相互作用为人们研究微观系统提供了窗口,更为微观系统的操纵提供了有力的工具。通过调控外加电场,可以改变物质的化学结构、促进电子转移、控制物质相变和生物分子的构象变化、调整催化剂的选择性,甚至影响冷化学反应的量子动力学。

在扫描隧道显微镜的尖端和金属表面之间施加电场,可以将金属表面的偶氮苯衍生物可逆的反式-顺式异构化。

金 (111) 表面偶氮苯的反式-顺式异构

同样的,改变电场的取向,可以在纳米尺度上改变分子的混合模式。

1,3,5-三(4-羧基苯基)苯和三聚硅酸在不同电压下的混合模式

可以说,分子与外场的相互作用便是微观系统的遥控器 。理解这一相互作用,对于微观尺度的科学研究具有重要意义。FIREANN 能够准确分析周期系统和非周期系统与外场的相互作用,并对任意阶数的系统响应进行预测,为微观研究提供了新方法

参考链接:

[1]pubs.acs.org/doi/full/10...

[2]pubs.acs.org/doi/full/10...

------ 完 ------

相关推荐
好评笔记1 小时前
多模态论文笔记——VDT
论文阅读·深度学习·机器学习·大模型·aigc·transformer·面试八股
好评笔记1 小时前
多模态论文笔记——ViViT
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
小言从不摸鱼8 小时前
【机器学习】深入探索SVM:支持向量机的原理与应用
人工智能·算法·机器学习·支持向量机·数据挖掘
小熊科研路(同名GZH)10 小时前
【故障诊断】量子粒子群优化极限学习机实现乳腺癌诊断,(QPSO-ELM)数据分类
人工智能·机器学习·分类
种花生的图图11 小时前
《FreqMamba: 从频率角度审视图像去雨问题》学习笔记
图像处理·人工智能·笔记·学习·机器学习
智能汽车人11 小时前
自动驾驶---苏箐对智驾产品的思考
人工智能·机器学习·自动驾驶
Erik_LinX12 小时前
day1-->day7| 机器学习(吴恩达)学习笔记
笔记·学习·机器学习
时间很奇妙!13 小时前
decison tree 决策树
算法·决策树·机器学习
liruiqiang0514 小时前
机器学习 - 初学者需要弄懂的一些线性代数的概念
人工智能·线性代数·机器学习·线性回归
Icomi_14 小时前
【外文原版书阅读】《机器学习前置知识》1.线性代数的重要性,初识向量以及向量加法
c语言·c++·人工智能·深度学习·神经网络·机器学习·计算机视觉