nn.TransformerEncoder的输出为NaN值的原因及解决方法

问题描述:

当使用nn.TransformerEncoder时,即如下情况:

复制代码
实例化一个TransformerEncoder 
 self.encoder_layer = nn.TransformerEncoderLayer(d_model=encoder_in_dim, nhead=encoder_head,
                                                           dim_feedforward=encoder_ffnn_dim,
                                                           batch_first=batch_first)
 self.model = nn.TransformerEncoder(self.pre_encoder_layer, num_layers=pre_encoder_layer_num)
调用:
transformer_features =  self.model(embeddings, src_key_padding_mask=src_padding_mask)

transformer_features的值为NaN

原因在于src_padding_mask的传入出现均为0/False的情况!即attention---mask出现了全1/True行

由于我们在使用MultiheadAttention做self-attention时因为batch内序列长度不一致,难免需要使用mask

以pytorch自带的torch.nn.TransformerEncoder方法为例,其forward函数如下

复制代码
forward(src, mask=None, src_key_padding_mask=None)

这里的mask会送到torch.nn.TransformerEncoderLayer的forward函数:

python 复制代码
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
        src2 = self.self_attn(src, src, src, attn_mask=src_mask,key_padding_mask=src_key_padding_mask)[0]

之后送到MultiheadAttention 的forward函数的attn_mask参数,而这里做的是一个self attention。

此时若是attn_mask出现一整行都是True的情况,通过如下源码中的实现mask的方法可以看到:

python 复制代码
    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_output_weights.masked_fill_(attn_mask, float('-inf'))
        else:
            attn_output_weights += attn_mask

把权重矩阵中需要mask的位置置为负无穷,然后再按行做softmax,问题就在这里,把一个元素全是是负无穷的tensor送给softmax,就会得到一个全是NaN的tensor。然后NaN和任何数运算都是NaN,NaN会传染,再经过一轮self attention,输出的tensor就全成NaN了。

解决方法:避免attention mask中存在全1/True的行

相关推荐
2的n次方_几秒前
CANN ascend-transformer-boost 深度解析:针对大模型的高性能融合算子库与算力优化机制
人工智能·深度学习·transformer
User_芊芊君子32 分钟前
【分布式训练】CANN SHMEM跨设备内存通信库:构建高效多机多卡训练的关键组件
分布式·深度学习·神经网络·wpf
聆风吟º42 分钟前
CANN算子开发:ops-nn神经网络算子库的技术解析与实战应用
人工智能·深度学习·神经网络·cann
觉醒大王43 分钟前
强女思维:着急,是贪欲外显的相。
java·论文阅读·笔记·深度学习·学习·自然语言处理·学习方法
笔画人生1 小时前
# 探索 CANN 生态:深入解析 `ops-transformer` 项目
人工智能·深度学习·transformer
灰灰勇闯IT1 小时前
领域制胜——CANN 领域加速库(ascend-transformer-boost)的场景化优化
人工智能·深度学习·transformer
小白狮ww1 小时前
要给 OCR 装个脑子吗?DeepSeek-OCR 2 让文档不再只是扫描
人工智能·深度学习·机器学习·ocr·cpu·gpu·deepseek
island13141 小时前
CANN GE(图引擎)深度解析:计算图优化管线、内存静态规划与异构任务的 Stream 调度机制
开发语言·人工智能·深度学习·神经网络
艾莉丝努力练剑1 小时前
深度学习视觉任务:如何基于ops-cv定制图像预处理流程
人工智能·深度学习
禁默1 小时前
大模型推理的“氮气加速系统”:全景解读 Ascend Transformer Boost (ATB)
人工智能·深度学习·transformer·cann