聊聊分布式 SQL 数据库Doris(七)

LSM-Tree

Doris的存储结构是类似LSM-Tree设计的,因此很多方面都是通用的,先阅读了解LSM相关的知识,再看Doris的底层存储与读取流程会清晰透彻很多,如下是几个关键的设计:

SSTable: Sorted Strings Table; 一般由一组数据block和一组元数据block组成,数据是已序的。元数据会存储数据block的描述信息,如索引、BloomFilter、压缩、统计等信息。

MemTable: 内存里的表,有序且存储在Buffer中;可以用多种数据结构来组织,一般是用跳表(SkipList),也可以是有序数组或红黑树等二叉搜索树;最后会被转化成SSTable格式刷入磁盘持久化存储。

Compaction: 合并压缩SSTable。

参考:

LSM 树设计原理

LSM Tree索引:高性能写引擎

索引

官网文档: 索引概述.

Doris内建的索引: 前缀索引(Short key Index)、ZoneMap索引,默认是根据建表时的key列生成的。

Doris 的数据存储在类似 SSTable(Sorted String Table)的数据结构中。该结构是一种有序的数据结构,可以按照指定的列进行排序存储。在这种数据结构上,以排序列作为条件进行查找,会非常的高效。

在 Aggregate、Unique 和 Duplicate 三种数据模型中。底层的数据存储,是按照各自建表语句中,AGGREGATE KEY、UNIQUE KEY 和 DUPLICATE KEY 中指定的列进行排序存储的。因此在此排序列的基础上根据不同的场景构建内置的索引,提高查询的性能与效率。

Duplicate、Aggregate、Unique 模型,都会在建表指定 key 列,然而实际上是有所区别的:对于 Duplicate 模型,表的key列, 可以认为只是 "排序列",并非起到唯一标识的作用。而 Aggregate、Unique 模型这种聚合类型的表,key 列是兼顾 "排序列" 和 "唯一标识列",是真正意义上的" key 列"。

参考: Apache Doris 索引机制解析

Join

官网文档: Doris Join 优化原理

概览

Doris 支持两种物理算子,一类是 Hash Join,另一类是 Nest Loop Join。

Doris 支持 4 种数据 Shuffle 方式:

  1. BroadCast Join: 要求把右表全量的数据都发送到左表上,即每一个参与 Join 的节点,它都拥有右表全量的数据

  2. Shuffle Join: 只支持hash join场景(即等值匹配). 当进行 Hash Join 时候,可以通过 Join 列计算对应的 Hash 值,并进行 Hash 分桶,并将分桶后的数据分散到节点中进行计算

  3. Bucket Shuffle Join: 右表数据扫描出来之后进行数据分区的 Hash 计算,根据左表本身的数据分布发送到右表对应的 Join 计算节点上。

  4. Colocation: 导入数据时,提前将join表的数据分散到一个节点

Runtime Filter

Doris 在进行 Hash Join 计算时会在右表构建一个哈希表,左表流式的通过右表的哈希表从而得出 Join 结果。而 RuntimeFilter 就是充分利用了右表的 Hash 表,在右表生成哈希表的时候,同时生成一个基于哈希表数据的一个过滤条件(Filter),然后下推到左表的数据扫描节点,通过这样的方式,左表在运行时(Runtime)提前进行数据过滤,提高查询效率。

Runtime Filter是分布式SQL查询引擎框架通用的一种优化手段,具体可参考: Join优化技术之Runtime Filter.

Runtime Filter涉及到的下推技术同样也是查询引擎框架常用的优化手段; 常见的下推优化技术有:谓词下推, 存储层下推等。

Doris支持的三种类型RuntimeFilter:

  1. IN 的优点是过滤效果明显,且快速。它的缺点首先第一个它只适用于 BroadCast,第二,它右表超过一定数据量的时候就失效了,当前 Doris 目前配置的是1024,即右表如果大于 1024,IN 的 Runtime Filter 就直接失效了,其余的RuntimeFileter则没有限制。
  2. MinMax 的优点是开销比较小。它的缺点就是对数值列还有比较好的效果,但对于非数值列,基本上就没什么效果。
  3. Bloom Filter 的特点就是通用,适用于各种类型、效果也比较好。缺点就是它的配置比较复杂并且计算较高。

使用场景的要求:

  1. 第一个要求就是左表大右表小,因为构建 Runtime Filter是需要承担计算成本的,包括一些内存的开销。
  2. 第二个要求就是左右表 Join 出来的结果很少,说明这个 Join 可以过滤掉左表的绝大部分数据。

Join Reorder

Join Reorder 是指在执行SQL查询时,决定多个表进行 join 的顺序。它是数据库查询优化的一个重要方面,对查询性能和效率有着重要的影响, 不同的 join order 对性能可能有数量级的影响。

从定义来看,其实就是寻找最短路径(最优解)的过程,因此可以从算法的角度考虑,比如动态规划算法与贪心算法;同时也可以基于规则来做。

Doris中Join Reorder的实现是基于规则策略的,其规则定义如下:

  1. 让大表、跟小表尽量做 Join,它生成的中间结果是尽可能小的。
  2. 把有条件的 Join 表往前放,也就是说尽量让有条件的 Join 表进行过滤
  3. Hash Join 的优先级高于 Nest Loop Join,因为 Hash join 本身是比 Nest Loop Join 快很多的。

Join Reorder 也是SQL查询引擎框架通用的一种优化手段, 在PolarDB、TiDB、StarRocks等数据库框架中都有涉及与应用。其实现与说明如下:

  1. TiDB Join Reorder 算法简介
  2. StarRocks Join Reorder 源码解析
  3. PolarDB-X 优化器核心技术 ~ Join Reorder
相关推荐
PersistJiao6 天前
Spark RDD各种join算子从源码层分析实现方式
spark·rdd·算子·join
饭桶也得吃饭7 天前
部署Apache Doris
linux·apache·doris
SelectDB技术团队1 个月前
科大讯飞:成本降低 60%,性能提升 10 倍,从 ES Loki 到 Apache Doris 可观测性存储底座升级
大数据·数据库·elasticsearch·doris·日志分析
SelectDB技术团队1 个月前
Apache Doris 3.0 里程碑版本|存算分离架构升级、湖仓一体再进化
数据库·数据仓库·doris·lakehouse·存算分离
SelectDB技术团队1 个月前
Apache Doris 2.0.15 版本发布
大数据·数据库·数据仓库·doris·数据同步
DBdoctor官方1 个月前
SQL性能优化指南:如何优化MySQL多表join场景
sql·mysql·性能优化·join·多表join
墨家巨子@俏如来2 个月前
五.海量数据实时分析-FlinkCDC+DorisConnector实现数据的全量增量同步
大数据·doris
SelectDB技术团队2 个月前
快手:从 Clickhouse 到 Apache Doris,实现湖仓分离向湖仓一体架构升级
数据仓库·clickhouse·doris·快手·lakehouse
Jet-W2 个月前
Doris使用手册以及与Mysql差异整理
大数据·数据库·后端·mysql·doris
最菜的Bird2 个月前
Apache Doris 实践
java·kafka·doris