Linux中的fork()函数的面试题目

1.面试题目1

(1)fork 以后,父进程打开的文件指针位置在子进程里面是否一样?(先open再fork)

(2)能否用代码简单的验证一下?

(3)先fork再打开文件父子进程是否共享偏移量?父进程打开的文件指针位置在子进程里面是否一样?能否用代码简单验证一下.(先fork再open会怎么样?)

1).进程打开文件的流程

inode:

文件数据都储存在"块"中,那么很显然,我们还必须找到一个地方储存文件的元信息,比如文件的创建者、文件的创建日期、文件的大小等等。这种储存文件元信息的区域就叫做inode,中文译名为"索引节点"。

每一个文件都有对应的inode,里面包含了与该文件有关的一些信息。通过这个inode节点,即通过文件具体的一些信息,我们才能找到这个文件,读取它.

每个inode都有一个号码,操作系统用inode号码来识别不同的文件。

2).先打开再fork的流程(重点)

代码如下:

先创建一个文件file.txt,内容为abcdefg;

cpp 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <assert.h>

int main()
{
    int fd=open("file.txt",O_RDONLY);
    assert(fd!=-1);

    pid_t pid=fork();
    assert(pid!=-1);

    if(pid==0)
    {
        char buff[128]={0};
        int n=read(fd,buff,1);
        printf("child:%s\n",buff);
        sleep(1);
        n=read(fd,buff,1);
        printf("child:%s\n",buff);
    }
    else
    {
        char buff[128]={0};
        int n=read(fd,buff,1);
        printf("parent:%s\n",buff);
        sleep(1);
        n=read(fd,buff,1);
        printf("parent:%s\n",buff);

    }

    close(fd);
    exit(0);
}

父进程打开文件以后,fork产生子进程,父子进程共享打开的文件,同时共享文件偏移量;

为什么?如图:

3).先fork再open

代码修改如下:

cpp 复制代码
 pid_t pid=fork();
  assert(pid!=-1);

int fd=open("file.txt",O_RDONLY);
    assert(fd!=-1);

(了解文件偏移量不共享)

为什么?如图:

面试题答案:

(1)在fork 之前打开的文件,在复制进程后,父子进程共享文件偏移量,所以文件指针在相同位置。

(2)代码如上

(3)先fork再打开文件,父子进程各自打开各自的,不共享偏移量;代码如上。

2.面试题目2

4).系统调用与库函数的区别

比如自己写的函数,调用的时候就是调换到函数的入口地址一句一句执行,但是系统调用就不一样,系统调用一旦执行,我们就需要 从用户空间切换到内核空间.

比如fopen :库函数 open:系统调用 fork:系统调用

可以man fopen (显示3),man 2 open (显示2),man fork (显示2)

系统调用的执行过程:

在Linux中,每个系统调用都被赋予了一个系统调用号.这样,通过这个独一无二的号就可以关联系统调用.当用户空间的进程执行一个系统调用的时候,这个系统调用号就用来指明到底是要执行哪个系统调用号;进程并不会提及系统调用的名称;

系统调用是为了方便使用操作系统的接口,而库函数则是为了人们编程的方便;

库函数调用与系统无关,不同的系统,调用库函数,库函数会调用不同的底层函数实现,因此可移植性好;

5).malloc和free的三个问题:

思考下面三个问题:

(1)申请了一块空间没有free,进程就结束了,那么空间被回收了吗?

(2)malloc()申请3G的内存能否成功?判断依据是什么?

(3)父进程堆区申请的空间复制后,子进程也会有一份,也需要释放?

演示代码:

cpp 复制代码
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <assert.h>
#include <string.h>

int main()
{
    char *s=(char *)malloc(1024ll*1024*1024*3);
    assert(s!=NULL);
    memset(s,0,1024ll*1024*1024*3);
    printf("main over!\n");
    exit(0);
}

1.进程在执行的过程中,malloc申请空间,不使用时,没有free就会出现内存泄漏;
如果进程结束了,那么所有向操作系统申请的内存都会被回放(释放);

2.申请1G或者更大空间,到底能不能成功?

如果当前的物理内存剩余空间够用,那么申请的空间肯定能成功;

如果不够用,我们先要看有没有虚拟内存,如果没有,不能成功;如果有虚拟内存,那么我们看内存+虚拟空间的大小能否满足,如果满足,那么我们是可以申请成功的,如果不够,当然不能成功;

首先我们需要了解一个名词:虚拟内存:

基于分页技术或者分页和分段技术的组合的虚拟内存,是现代计算机中内存管理最常用的方法之一.虚拟内存对应用程序完全透明,使得每个进程在执行时好像有无限的内存可用.为实现这一点,操作系统为每个进程在磁盘上创建一块虚拟地址空间,即虚拟内存. 在需要的时候可以把部分虚拟内存载入到正在的内存中.这样,多个进程便可以共享相对比较小的内存.为了使虚拟内存载入到真正的内存中.这样,多**个进程便可以共享相对比较小的内存.**为了使虚拟内存更为有效,需要硬件机制来执行基本的分页和分段功能,如虚拟地址和实地址之间的地址转换.

虚拟内存提供的三个重要的能力:

1) 它将主存看成是一个存储在磁盘上的地址空间的高速缓存,在主存中只保存活动区域,根据需要在磁盘和主存之间来回传送数据,使得能够运行比内存大的多的进程。

2) 它为每个进程提供了一致的地址空间,从而简化了存储器管理.

3) 它保护每个进程的地址空间不被其他进程破坏 .

<<深入理解计算机系统>>580页:(由此可知2,3)

了解两个命令:

sudo swapoff -a;关闭虚拟内存;

sudo swapon -a;开启虚拟内存;

若是32位系统,申请3G空间一定会失败,因为32位系统的用户总空间大小为3G.

(3)父进程堆区申请的空间复制后,子进程是不是也会有一份?是不是也需要释放?

我们先来看下面的代码:

cpp 复制代码
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <stdlib.h>
int main()
{
    char *s=(char *)malloc(128);
    assert(s!=NULL);

    pid_t pid=fork();
    assert(pid!=-1);

    free(s);

    exit(0);
}

编译运行并没有出错,如果是共享空间的话, 那么父子进程会对一个空间分别free,我们有前面学过的C语言可以知道,如果我们对一个空间free两次,编译运行会出现错误.

所以父子进程堆空间不共享(这里指的是每个进程的堆空间).哪怕父子进程对申请的对空间都没有操作.

其实如果对空间操作也是没有问题的,如下:

cpp 复制代码
#include <stdio.h>
#include <assert.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>  //1
int main()
{
    char *s=(char *)malloc(128);
    assert(s!=NULL);

    pid_t pid=fork();
    assert(pid!=-1);

    if(pid==0)//2
    {
        strcpy(s,"child");//3
    }
    else  //4
    {
        strcpy(s,"parent");//5
    }
    printf("s=%s\n",s); //6
    free(s);

    exit(0);
}

结论:

父进程堆区申请的空间复制后,子进程也有一份.也需要释放; 也就是说,fork会把进程的上下文都复制一遍,如果是malloc申请的话,内核会给子进程分配和父进程一样多的空间,父子进程都需要分别free;

相关推荐
不想学习!!11 分钟前
linux之进程控制
java·linux·服务器
良许Linux12 分钟前
学电子信息工程时你遇到什么相见恨晚的网站和学习方法?
linux
良许Linux15 分钟前
一个人离职前有什么征兆?
linux
神经毒素19 分钟前
WEB安全--文件上传漏洞--36C3 CTF includer bypass
linux·安全·web安全
良许Linux25 分钟前
单片机、嵌入式的大神都平时浏览什么网站?
linux
kfepiza29 分钟前
`accept_ra` 和 `autoconf` 和 `forwarding` 的关系 笔记250404
linux·网络·笔记·tcp/ip·智能路由器·ip·tcp
DADIAN_GONG38 分钟前
incomplete command on Huawei switch
linux·运维·华为
Once_day1 小时前
Linux错误(6)X64向量指令访问地址未对齐引起SIGSEGV
linux·c++·sse·x64·sigsegv·xmm0
Tee xm1 小时前
清晰易懂的 Flutter 卸载和清理教程
linux·windows·flutter·macos
小镇青年达师傅1 小时前
System V信号量 vs. POSIX信号量:核心区别与选型指南
linux·嵌入式·多线程·系统编程