Flink Flink中的分流

一、什么是分流

所谓"分流",就是将一条数据流拆分成完全独立的两条、甚至多条流。也就是基于一个DataStream,定义一些筛选条件,将符合条件的数据拣选出来放到对应的流里。

二、基于filter算子的简单实现分流

其实根据条件筛选数据的需求,本身非常容易实现:只要针对同一条流多次独立调用.filter()方法进行筛选,就可以得到拆分之后的流了。

案例需求:读取一个整数数字流,将数据流划分为奇数流和偶数流。

java 复制代码
package com.flink.DataStream.SplitStream;

import org.apache.flink.api.common.functions.FilterFunction;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.configuration.RestOptions;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class FlinkSplitStreamByFilter {
    public static void main(String[] args) throws Exception {
        //TODO 创建Flink上下文执行环境
        StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment
                .createLocalEnvironmentWithWebUI(new Configuration().set(RestOptions.BIND_PORT, "8081"));
        //.getExecutionEnvironment();
        //TODO 设置全局并行度为2
        streamExecutionEnvironment.setParallelism(2);
        DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.socketTextStream("localhost", 8888);
        //TODO 先将输入流转为Integer类型
        SingleOutputStreamOperator<Integer> mapResult = dataStreamSource.map((input) -> {
            int i = Integer.parseInt(input);
            return i;
        });
        //TODO 使用匿名函数分流偶数流
        SingleOutputStreamOperator<Integer> ds1 = mapResult.filter(new FilterFunction<Integer>() {
            @Override
            public boolean filter(Integer a) throws Exception {
                return a % 2 == 0;
            }
        });
        //TODO 使用lamda表达式分流奇数流
        SingleOutputStreamOperator<Integer> ds2 = mapResult.filter((a) -> a % 2 == 1);
        ds1.print("偶数流");
        ds2.print("奇数流");
        streamExecutionEnvironment.execute();
    }
}

执行结果

java 复制代码
奇数流:1> 1
偶数流:2> 2
偶数流:1> 2
偶数流:2> 4
奇数流:1> 3
奇数流:2> 1

Process finished with exit code 130 (interrupted by signal 2: SIGINT)

这种实现非常简单,但代码显得有些冗余------我们的处理逻辑对拆分出的三条流其实是一样的,却重复写了三次。而且这段代码背后的含义,是将原始数据流 stream 复制三份,然后对每一份分别做筛选;这明显是不够高效的。我们自然想到,能不能不用复制流,直接用一个算子就把它们都拆分开呢?

三、使用测输出流

如何使用处理函数中侧输出流。简单来说,只需要调用上下文 ctx 的.output()方法,就可以输出任意类型的数据了。而侧输出流的标记和提取,都离不开一个"输出标签"(OutputTag),指定了侧输出流的 id 和类型。

java 复制代码
package com.flink.DataStream.SplitStream;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;

public class SplitStreamByOutputTag {
    public static void main(String[] args) throws Exception {
        //TODO 创建Flink上下文环境
        StreamExecutionEnvironment streamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment();
        //TODO 设置并行度为1
        streamExecutionEnvironment.setParallelism(1);
        //TODO Source
        DataStreamSource<String> dataStreamSource = streamExecutionEnvironment.socketTextStream("localhost", 8888);
        //TODO Transform
        SingleOutputStreamOperator<Object> outputStreamOperator = dataStreamSource.map(new MapFunction<String, Object>() {
            @Override
            public Object map(String input) throws Exception {
                //将socket输入的string转为Int类型
                return Integer.parseInt(input);
            }
        });
        //在main函数中new2个输出标签
        OutputTag<Integer> ji = new OutputTag<Integer>("ji", Types.INT){};
        OutputTag<Integer> ou = new OutputTag<Integer>("ou", Types.INT){};
        //调用底层算子process
        SingleOutputStreamOperator<Object> output0 = outputStreamOperator.process(new ProcessFunction<Object, Object>() {
            @Override
            public void processElement(Object value, ProcessFunction<Object, Object>.Context context, Collector<Object> collector) throws Exception {
                int i = Integer.parseInt(value.toString());
                if (i < 0) {
                    //如果小于0就侧输出流为负数
                    context.output(ou, i);
                } else if (i  > 10) {
                    //如果大于10就侧输出流为异常
                    context.output(ji, i);
                } else {
                    //其他视为正常值流入主流
                    collector.collect(i);
                }
            }
        });
        //TODO Sink
        output0.print("正常");
        DataStream<Integer> output1 = output0.getSideOutput(ji);
        DataStream<Integer> output2 = output0.getSideOutput(ou);

        output1.printToErr("负数");
        output2.printToErr("异常");

        //TODO 执行
        streamExecutionEnvironment.execute();

    }
}



相关推荐
hzbigdog42 分钟前
php的CSV大数据导入导出的通用处理类
大数据·后端·php
Web3_Daisy1 小时前
如何在市场波动中稳步推进代币发行
大数据·人工智能·物联网·web3·区块链
yumgpkpm1 小时前
Hadoop大数据平台在中国AI时代的后续发展趋势研究CMP(类Cloudera CDP 7.3 404版华为鲲鹏Kunpeng)
大数据·hive·hadoop·python·zookeeper·oracle·cloudera
一瓢一瓢的饮 alanchan1 小时前
Flink原理与实战(java版)#第1章 Flink快速入门(第一节IDE词频统计)
java·大数据·flink·kafka·实时计算·离线计算·流批一体化计算
Elastic 中国社区官方博客2 小时前
Elasticsearch:相关性在 AI 代理上下文工程中的影响
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
萤丰信息3 小时前
智慧园区:数字中国的“微缩实验室”如何重构城市未来
大数据·人工智能·科技·安全·重构·智慧园区
wang_yb3 小时前
数据分析师的基本功总结
大数据·databook
唐兴通个人4 小时前
金融保险银行营销AI数字化转型培训讲师培训老师唐兴通讲金融银保团队险年金险市场销售
大数据·人工智能
星光一影5 小时前
基于Spring Boot电子签平台,实名认证+CA证书
大数据·spring boot·开源·vue·html5
Hello.Reader6 小时前
用 Table ID 驯服异构库Flink CDC 跨系统表映射的工程化实践
大数据·flink