【pytorch】从yolo的make_grid理解torch.meshgrid、torch.stack

文章目录

    • 简述
    • [1、torch.meshgrid 创建行列坐标](#1、torch.meshgrid 创建行列坐标)
    • [2、torch.stack 结合行列坐标](#2、torch.stack 结合行列坐标)
    • 3、通过view函数扩展维度

简述

yolo检测 make_grid创建网格代码如下,那么什么是torch.meshgrid?

python 复制代码
def _make_grid(nx=20, ny=20):
        yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
        return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()

1、torch.meshgrid 创建行列坐标

torch.meshgrid 是 PyTorch 中的一个函数,这个函数通常用于创建坐标点的网格,以便进行一些网格上的操作,比如插值或者计算函数值。

例如,我们的目标是创建4行8列的坐标网格。

python 复制代码
import torch
ny=4
nx=8
yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
print(yv)
print(xv)

'''
tensor([[0, 0, 0, 0, 0, 0, 0, 0],
        [1, 1, 1, 1, 1, 1, 1, 1],
        [2, 2, 2, 2, 2, 2, 2, 2],
        [3, 3, 3, 3, 3, 3, 3, 3]])
tensor([[0, 1, 2, 3, 4, 5, 6, 7],
        [0, 1, 2, 3, 4, 5, 6, 7],
        [0, 1, 2, 3, 4, 5, 6, 7],
        [0, 1, 2, 3, 4, 5, 6, 7]])
'''

这个操作会形成以ny为行数,nx为列数的坐标网格,也就是4行8列。其中每行每列又按照torch.arange进行排序,也就是0-4行,0-8列。如下图所示。

可以看到yv实际上是一个纵坐标的网格,每个值都代表着自己所在的行,分别对应0-3行

xv代表着自己的列,也就是0-7列。在yolo检测的make_grid中,通常还有下个步骤,将两个值堆叠在一起。torch.stack。

2、torch.stack 结合行列坐标

torch.stack((xv, yv), 2)就是将上述行列坐标信息堆叠在第2个维度,这样子每个位置就有各自的行列坐标值。

(为了迎合yolo和w、h的顺序,x坐标堆叠在前面,y堆叠在后面)

python 复制代码
tmp = torch.stack((xv, yv), 2)
print(tmp.shape)
print(tmp[1,2])
print(tmp[3,6])

'''
torch.Size([4, 8, 2])
tensor([2, 1])
tensor([6, 3])
'''

可以看到w=1,h=2对应的值就是[2,1]也就是第2行,第1列。

w=3,h=6对应的值就是[6,3]也就是第6行,第3列。每一个wh都对应各自的行列坐标。也就是通过grid和stack函数,每个行列都有属于自己的值了!

3、通过view函数扩展维度

python 复制代码
out=tmp.view((1, 1, ny, nx, 2)).float()

也就是将3维向量扩展成5维,就是为了后续检测操作,没有什么需要特别说的。

至此,整个make_grid函数解释完毕。这个函数作用就是生成ny行,nx列的网格用于检测时候的xy坐标确定

相关推荐
pzx_0014 分钟前
【机器学习】K折交叉验证(K-Fold Cross-Validation)
人工智能·深度学习·算法·机器学习
海域云赵从友15 分钟前
助力DeepSeek私有化部署服务:让企业AI落地更简单、更安全
人工智能·安全
伊一大数据&人工智能学习日志29 分钟前
自然语言处理NLP 04案例——苏宁易购优质评论与差评分析
人工智能·python·机器学习·自然语言处理·数据挖掘
刀客12334 分钟前
python3+TensorFlow 2.x(六)自编码器
人工智能·python·tensorflow
大模型之路1 小时前
Grok-3:人工智能领域的新突破
人工智能·llm·grok-3
闻道且行之1 小时前
LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
人工智能·语言模型·llama·qlora·fsdp
喝不完一杯咖啡1 小时前
【AI时代】可视化训练模型工具LLaMA-Factory安装与使用
人工智能·llm·sft·llama·llama-factory
huaqianzkh2 小时前
理解构件的3种分类方法
人工智能·分类·数据挖掘
后端码匠2 小时前
Spring Boot3+Vue2极速整合:10分钟搭建DeepSeek AI对话系统
人工智能·spring boot·后端
用户231434978142 小时前
使用 Trae AI 编程平台生成扫雷游戏
人工智能·设计