KNN实战-图像识别

数据说明

是在循环0-9的数字一直循环500次所得到的数据,然后以手写照片的形式存在

识别的步骤

  • 加载数据
  • 构建目标值
  • 构建模型
  • 参数调优
  • 可视化展示

加载数据

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
# 记载数据
data = np.load('./digit.npy')
data

构建目标值

python 复制代码
# 构建基础的目标值
y = list(np.arange(0,10))*500
# 对生成的目标值进行排序,与图片的目标值进行对应
y.sort()
# 为了在拆分数据的时候可以正常拆分
y = np.array(y)

数据处理和数据拆分

数据处理

python 复制代码
X = data.reshape(5000,-1)
X.shape # 784:是图片的像素值 ,也就是图像的特征

数据拆分

python 复制代码
from sklearn.model_selection import train_test_split
X_tarin,X_test,y_train,y_test = train_test_split(X,y,# x,y的数据
test_size=0.05  # 验证集的占总数据的比重
,random_state=1024 # 随机数的种子)
display(X_tarin.shape,X_test.shape,y_train.shape,y_test.shape)

创建模型

python 复制代码
from sklearn.neighbors import KNeighborsClassifier
# 创建模型
model = KNeighborsClassifier(n_neighbors=5)
model.fit(X_tarin,y_train)
# 数据分数
model.score(X_test,y_test)

训练数据的结果的分数

参数调优

python 复制代码
%%time
from sklearn.model_selection import GridSearchCV
prams = dict(n_neighbors = [5,7,9,12,15,17,21,23,30],
             weights=['uniform','distance'],
             p=[1,2])
estimator = KNeighborsClassifier()
gCV = GridSearchCV(estimator,prams,cv=5,scoring='accuracy')
gCV.fit(X_tarin,y_train)

%%time:获取当前程序的运行时间

获取最佳参数

python 复制代码
gCV.best_params_

获取平均分数

py 复制代码
gCV.best_score_

获取最佳模型

py 复制代码
gCV.best_estimator_

数据的验证与预测

python 复制代码
best_model = gCV.best_estimator_
y_predict = gCV.predict(X_test)
print('测试值:',y_predict)
print('真实值:',y_test)
best_model.score(X_test,y_test)

得到的结果(在得分上看模型的质量还是有所提升的)

可视化

python 复制代码
plt.figure(figsize=(5*2,10*3))
for i in range(50):
    plt.subplot(10,5,i+1)
    plt.imshow(X_test[i].reshape(28,28))
    true = y_test[i]
    predict = y_predict[i]
    plt.title(f'true:{true}\n'+f'predict:{predict}')

坚持学习,整理复盘

相关推荐
AI量化投资实验室6 小时前
15年122倍,年化43.58%,回撤才20%,Optuna机器学习多目标调参backtrader,附python代码
人工智能·python·机器学习
明月(Alioo)7 小时前
机器学习入门,无监督学习之K-Means聚类算法完全指南:面向Java开发者的Python实现详解
python·算法·机器学习
深度之眼7 小时前
【Nature高分思路速递】 物理驱动的机器学习
人工智能·机器学习·pinn
胖达不服输7 小时前
「日拱一码」105 机器学习原子间势能MLIP
人工智能·机器学习·机器学习原子间势能·mlip
人机与认知实验室10 小时前
触摸大语言模型的边界
人工智能·深度学习·机器学习·语言模型·自然语言处理
ARM+FPGA+AI工业主板定制专家10 小时前
基于Jetson+GMSL AI相机的工业高动态视觉感知方案
人工智能·机器学习·fpga开发·自动驾驶
做科研的周师兄11 小时前
【机器学习入门】7.4 随机森林:一文吃透随机森林——从原理到核心特点
人工智能·学习·算法·随机森林·机器学习·支持向量机·数据挖掘
第七序章12 小时前
【C++】AVL树的平衡机制与实现详解(附思维导图)
c语言·c++·人工智能·机器学习
晨非辰12 小时前
【面试高频数据结构(四)】--《从单链到双链的进阶,读懂“双向奔赴”的算法之美与效率权衡》
java·数据结构·c++·人工智能·算法·机器学习·面试
惜月_treasure13 小时前
LlamaIndex多模态RAG开发实现详解
开发语言·python·机器学习