代码随想录算法训练营第三十四天|62.不同路径,63. 不同路径 II

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish" )。

问总共有多少条不同的路径?

示例 1:

复制代码
输入:m = 3, n = 7
输出:28

**思路:**显然达到右下角只能是从左边或者上面来,而每个位置也只能是从左边或者上面来,考虑动态规划。

**解决:**动态规划五步曲

第一步:确定dp数组含义;

题目是求到达右下角多少不同路径,所以dp应该是二维数组dp[i][j],表示到达i,j坐标位置有多少条不同路径。

第二步:确定递推公式;

每个位置也只能是从左边或者上面来,所以达到i,j位置,dp[i][j]=dp[i-1][j]+dp[i][j-1]。

第三步:dp数组初始化;

首先i=0时,不管j等于多少,dp[0][j]都是等于1;同样j=0时,dp[i][0]都是等于1。

第四步:确定遍历顺序;

依次算出起点到每个位置的有多少条不同路径,从左到右,从上到下。

第五步:举例推导dp数组

代码:

cpp 复制代码
class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>>  dp(m, vector<int>(n, 0));
        for(int j=0;j<n;j++){
            dp[0][j]=1;
        }
        for(int i=0;i<m;i++){
            dp[i][0]=1;
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m-1][n-1];
    }
};

63. 不同路径 II - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 "Start" )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 "Finish")。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 10 来表示。

示例 1:

复制代码
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有2条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

思路:用动态规划但是需要去掉障碍物的位置。

**解决:**动态规划五步曲

第一步:确定dp数组含义;

含义还是一样,表示到达i,j位置的路径条数。

第二步:确定递推公式;

dp[i][j]=dp[i-1][j]+dp[i][j-1],如果遇到障碍怎么办,也就是当前i,j位置没有路径过来,递推直接跳过。

第三步:dp数组初始化;

首先初始化和上题类似,但是如果障碍物在边界,那障碍物右边的都是0,或者障碍物下面的都是0;

第四步:确定遍历顺序;

和上题一样

第五步:举例推导dp数组

代码:注意考虑障碍物在起点或者终点。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();

        if (obstacleGrid[m - 1][n - 1] == 1 || obstacleGrid[0][0] == 1) //如果在起点或终点出现了障碍
            return 0;
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for(int j=0;j<n&&obstacleGrid[0][j] == 0;j++){
            dp[0][j]=1;
        }
        for(int i=0;i<m&&obstacleGrid[i][0] == 0;i++){
            dp[i][0]=1;
        }
        for(int i=1;i<m;i++){
            for(int j=1;j<n;j++){
                if(obstacleGrid[i][j]==1) continue;
                dp[i][j]=dp[i-1][j]+dp[i][j-1];
            }
        }
        return dp[m - 1][n - 1];
    }
};
相关推荐
Yingye Zhu(HPXXZYY)4 小时前
ICPC 2023 Nanjing R L 题 Elevator
算法
程序员Xu7 小时前
【LeetCode热题100道笔记】二叉树的右视图
笔记·算法·leetcode
笑脸惹桃花7 小时前
50系显卡训练深度学习YOLO等算法报错的解决方法
深度学习·算法·yolo·torch·cuda
阿维的博客日记8 小时前
LeetCode 48 - 旋转图像算法详解(全网最优雅的Java算法
算法·leetcode
GEO_YScsn8 小时前
Rust 的生命周期与借用检查:安全性深度保障的基石
网络·算法
程序员Xu8 小时前
【LeetCode热题100道笔记】二叉搜索树中第 K 小的元素
笔记·算法·leetcode
THMAIL9 小时前
机器学习从入门到精通 - 数据预处理实战秘籍:清洗、转换与特征工程入门
人工智能·python·算法·机器学习·数据挖掘·逻辑回归
Kevinhbr9 小时前
CSP-J/S IS COMING
数据结构·c++·算法
蕓晨10 小时前
set的插入和pair的用法
c++·算法
THMAIL10 小时前
深度学习从入门到精通 - AutoML与神经网络搜索(NAS):自动化模型设计未来
人工智能·python·深度学习·神经网络·算法·机器学习·逻辑回归