RRF (Reciprocal Rank Fusion) 排序算法详解

Reciprocal Rank Fusion (RRF) 算法,它是一种用于合并多个排名列表的方法。下面我将详细解释这个算法的工作原理和实现细节。

算法概述

RRF 是一种简单但有效的排名融合技术,它通过将多个排名列表中的项目位置进行加权组合,生成一个统一的排名。它的主要特点是:

  1. 不需要预先知道各个排名列表的质量

  2. 对排名靠前的项目给予更高的权重

  3. 对异常值有较好的鲁棒性

算法参数

  • lists: 一个包含多个排名列表的列表,每个子列表都是一个有序的项目集合

  • k: 一个常数,用于控制低排名项目的贡献(默认值为60)

算法步骤详解

1. 初始化分数字典

复制代码
rrf_scores = {}

创建一个空字典来存储每个项目的累积分数。

2. 遍历每个排名列表

复制代码
for rank_list in lists:

对于输入的每一个排名列表进行处理。

3. 遍历列表中的每个项目

复制代码
for rank, item in enumerate(rank_list, start=1):

使用 enumerate 遍历列表中的每个项目,rank 从1开始表示项目在当前列表中的位置。

4. 计算并累加RRF分数

复制代码
if item in rrf_scores:
    rrf_scores[item] += 1 / (k + rank)
else:
    rrf_scores[item] = 1 / (k + rank)

对于每个项目,计算其RRF分数并累加:

  • 如果在多个列表中出现,分数会累加

  • RRF分数计算公式:1 / (k + rank)

    • rank 是项目在当前列表中的位置(从1开始)

    • k 是常数,用于控制低排名项目的贡献

5. 按分数排序

复制代码
sorted_items = sorted(rrf_scores.items(), key=lambda x: x[1], reverse=True)

将所有项目按照累积的RRF分数从高到低排序。

6. 格式化输出结果

复制代码
result = [{"score": score, "document": item, "index": i} for i, (item, score) in enumerate(sorted_items) if item]

将排序后的结果转换为字典列表,每个字典包含:

  • score: 项目的RRF分数

  • document: 项目本身

  • index: 项目在最终排名中的位置

算法特点

  1. 排名靠前的项目权重更大:由于使用倒数函数,排名越靠前(rank越小),贡献的分数越大

  2. 参数k的作用

    • 较大的k值会减小不同排名间的分数差异

    • 较小的k值会放大高排名项目的优势

    • 默认值60是一个经验值,可以根据具体场景调整

  3. 多列表融合:如果一个项目在多个列表中排名靠前,它的总分将更高

示例说明

假设有两个排名列表:

  • 列表1: ["A", "B", "C"]

  • 列表2: ["B", "A", "D"]

计算过程(k=60):

列表1:

  • A: 1/(60+1) ≈ 0.0164

  • B: 1/(60+2) ≈ 0.0161

  • C: 1/(60+3) ≈ 0.0159

列表2:

  • B: 1/(60+1) ≈ 0.0164

  • A: 1/(60+2) ≈ 0.0161

  • D: 1/(60+3) ≈ 0.0159

累加结果:

  • A: 0.0164 + 0.0161 ≈ 0.0325

  • B: 0.0161 + 0.0164 ≈ 0.0325

  • C: 0.0159

  • D: 0.0159

最终排序可能是[A, B, C, D]或[B, A, C, D](取决于具体实现)

应用场景

RRF常用于:

  • 搜索引擎结果融合

  • 推荐系统多策略结果合并

  • 任何需要合并多个排名列表的场景

这种方法的优势在于它简单有效,不需要训练数据,且对各个输入列表的质量不敏感。

具体代码如下:

复制代码
def rrf_rescore(lists: list, k=60):
    rrf_scores = {}
    for rank_list in lists:
        for rank, item in enumerate(rank_list, start=1):
            if item in rrf_scores:
                rrf_scores[item] += 1 / (k + rank)
            else:
                rrf_scores[item] = 1 / (k + rank)
    sorted_items = sorted(rrf_scores.items(), key=lambda x: x[1], reverse=True)
    result = [{"score": score, "document": item, "index": i} for i, (item, score) in enumerate(sorted_items) if item]
    return result

if __name__ == "__main__":
    lists = [
        ["a", "b", "c", "d"],
        ["b", "c", "e"],
        ["c", "f"],
        ["a", "c", "g"]
    ]
    k = 60
    result = rrf_rescore(lists, k)
    print(result)

运行结果:

相关推荐
程序员大雄学编程9 小时前
「深度学习笔记4」深度学习优化算法完全指南:从梯度下降到Adam的实战详解
笔记·深度学习·算法·机器学习
小O的算法实验室9 小时前
2022年ASOC SCI2区TOP,基于竞争与合作策略的金字塔粒子群算法PPSO,深度解析+性能实测,深度解析+性能实测
算法·论文复现·智能算法·智能算法改进
南莺莺9 小时前
邻接矩阵的基本操作
数据结构·算法··邻接矩阵
微波仿真10 小时前
实现多通道ADC多次测量取平均值,使用DMA
算法
余俊晖10 小时前
多模态文档理解视觉token剪枝思路
人工智能·算法·剪枝·多模态
aramae11 小时前
详细分析平衡树--红黑树(万字长文/图文详解)
开发语言·数据结构·c++·笔记·算法
再卷也是菜11 小时前
C++篇(13)计算器实现
c++·算法
CHEN5_0211 小时前
【leetcode100】和为k的子数组(两种解法)
java·数据结构·算法
Codeking__11 小时前
DFS算法原理及其模板
算法·深度优先·图论
Victory_orsh12 小时前
“自然搞懂”深度学习系列(基于Pytorch架构)——01初入茅庐
人工智能·pytorch·python·深度学习·算法·机器学习