Spark经典案例分享

Spark经典案例

  1. 链接操作案例
  2. 二次排序案例

链接操作案例

案例需求

数据介绍

代码如下:

Scala 复制代码
package base.charpter7

import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs.{FileSystem, Path}
import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

/**
 * @projectName sparkGNU2023  
 * @package base.charpter7  
 * @className base.charpter7.Join  
 * @description ${description}  
 * @author pblh123
 * @date 2023/11/28 17:25
 * @version 1.0
 *
 */
    
object Join {
  def main(args: Array[String]): Unit = {

    //    1. 创建一个sc对象
    if (args.length != 4) {
      println("usage is WordCount <rating> <movie> <output>")
      System.exit(5)
    }
    val murl = args(0)
    val ratingfile = args(1)
    val movingfile = args(2)
    val outputfile = args(3)

    val spark: SparkSession = new SparkSession.Builder()
      .appName(s"${this.getClass.getSimpleName}").master(murl).getOrCreate()
    val sc: SparkContext = spark.sparkContext

    //    2. 代码主体
    //    判断输出路径是否存在,存在则删除
    val conf: Configuration = new Configuration()
    val fs: FileSystem = FileSystem.get(conf)
    if (fs.exists(new Path(outputfile))) {
      println(s"存在目标文件夹$outputfile")
      fs.delete(new Path(outputfile))
      println(s"目标文件夹$outputfile 已删除")
    }
    else println(s"目标文件夹$outputfile 不存在")


    //rating etl
    val ratingrdd: RDD[String] = sc.textFile(ratingfile, 1)
    val rating: RDD[(Int, Double)] = ratingrdd.map(line => {
      val fileds: Array[String] = line.split("::")
      (fileds(1).toInt, fileds(2).toDouble)
    })
    val movieScores: RDD[(Int, Double)] = rating.groupByKey().map(x => {
      val avg = x._2.sum / x._2.size
      (x._1, avg)
    })
    //    move etl
    val movierdd: RDD[String] = sc.textFile(movingfile)
    // movieid,(movieid,title)
    val movieskey: RDD[(Int, (Int, String))] = movierdd.map(line => {
      val fileds: Array[String] = line.split("::")
      (fileds(0).toInt, fileds(1))
    }).keyBy(tup => tup._1)

    // movieid,(movieid,avg_rating)
    val sskey: RDD[(Int, (Int, Double))] = movieScores.keyBy(tup => tup._1)
    // movieid, (movieid,avg_rating),(movieid,title)
    val joinres: RDD[(Int, ((Int, Double), (Int, String)))] = sskey.join(movieskey)
    // movieid,avg_rating,title
    val res: RDD[(Int, Double, String)] = joinres.filter(f => f._2._1._2 > 4.0)
      .map(f => (f._1, f._2._1._2, f._2._2._2))
//    val res: RDD[(Int, Double, String)] = sskey.join(movieskey)
//      .filter(f => f._2._1._2 > 4.0)
//      .map(f => (f._1, f._2._1._2, f._2._2._2))

    res.take(5).foreach(println)
    res.saveAsTextFile(outputfile)


    //  3. 关闭sc,spark对象
    sc.stop()
    spark.stop()
  }
}

运行结果

二次排序案例

需求及数据说明:

代码实现

SecondarySortKey.class 方法

Scala 复制代码
package base.charpter7

/**
 * @projectName sparkGNU2023  
 * @package base.charpter7  
 * @className base.charpter7.SecondarySortKey  
 * @description ${description}  
 * @author pblh123
  
* @date 2023/11/29 17:01
  
* @version 1.0
  
*/
    
class SecondarySortKey(val first:Int, val second:Int) extends Ordered[SecondarySortKey] with Serializable{

  override def compare(that: SecondarySortKey): Int = {
    if (this.first - that.first != 0){
      this.first - that.first
    } else {
      this.second - that.second
    }
    }
}
复制代码
SecondarySortApp.scala方法
Scala 复制代码
package base.charpter7

import org.apache.spark.SparkContext
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession

/**
 * @projectName sparkGNU2023  
 * @package base.charpter7  
 * @className base.charpter7.SecondarySortApp  
 * @description ${description}  
 * @author pblh123
 * @date 2023/11/29 17:04
 * @version 1.0
 *
 */
    
object SecondarySortApp {
  def main(args: Array[String]): Unit = {

    //  1. 创建spark,sc对象
    if (args.length != 2) {
      println("您需要输入二个参数")
      System.exit(5)
    }
    val musrl: String = args(0)
    val spark: SparkSession = new SparkSession.Builder()
      .appName(s"${this.getClass.getSimpleName}")
      .master(musrl)
      .getOrCreate()
    val sc: SparkContext = spark.sparkContext

    //  2. 代码主体
    // 读取一个txt文件
    val inputfile: String = args(1)
    val lines: RDD[String] = sc.textFile(inputfile, 1)
    // 进行二次排序
    val pairRDDwithSort: RDD[(SecondarySortKey, String)] = lines.map(line => {
      val strings: Array[String] = line.split(" ")
      (new SecondarySortKey(strings(0).toInt, strings(1).toInt), line)
    })
    val pairRDDwithSort2: RDD[(SecondarySortKey, String)] = pairRDDwithSort.sortByKey(false)
    val sortedRes: RDD[String] = pairRDDwithSort2.map(sortedline => sortedline._2)
    sortedRes.collect().foreach(println)

    //  3. 关闭sc,spark对象
    sc.stop()
    spark.stop()
  }
}

配置参数

运行效果

相关推荐
uesowys5 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
鹏说大数据13 小时前
Spark 和 Hive 的关系与区别
大数据·hive·spark
B站计算机毕业设计超人13 小时前
计算机毕业设计Hadoop+Spark+Hive招聘推荐系统 招聘大数据分析 大数据毕业设计(源码+文档+PPT+ 讲解)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
B站计算机毕业设计超人13 小时前
计算机毕业设计hadoop+spark+hive交通拥堵预测 交通流量预测 智慧城市交通大数据 交通客流量分析(源码+LW文档+PPT+讲解视频)
大数据·hive·hadoop·python·spark·毕业设计·课程设计
Lansonli18 小时前
大数据Spark(八十):Action行动算子fold和aggregate使用案例
大数据·分布式·spark
鸿乃江边鸟2 天前
Spark Datafusion Comet 向量化Rust Native--CometShuffleExchangeExec怎么控制读写
大数据·rust·spark·native
伟大的大威3 天前
NVIDIA DGX Spark (ARM64/Blackwell) Kubernetes 集群 + GPU Operator 完整部署指南
大数据·spark·kubernetes
小邓睡不饱耶3 天前
深度实战:Spark GraphX构建用户信任网络,精准锁定高价值目标用户(含完整案例)
大数据·spark·php
B站计算机毕业设计超人3 天前
计算机毕业设计hadoop+spark+hive共享单车预测系统 共享单车数据可视化分析 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·python·深度学习·spark·毕业设计·课程设计
B站计算机毕业设计超人3 天前
计算机毕业设计Python+Spark+Hadoop+Hive微博舆情分析 微博情感分析可视化 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·hadoop·爬虫·python·spark·cnn·课程设计