【杂】解决关于mean(0)理解错误引发的程序bug

一、环境和解释器要一起配置好

invalid syntax

发生你在终端激活了一个环境,但 VSCode 依然使用之前的解释器的情况。

解释器设置影响了 VSCode 中运行 Python 脚本、调试、代码补全等功能的行为。VSCode 会根据你选择的解释器来执行这些操作。
二、关于mean(0)引发的错误:

1、

N, bs \* T, C, W, H

T, N\* bs,C,W,H

mean(0) ---->[N* bs, C,W,H]

2、

bs\*T, C,W,H

T, bs, C, W, H

mean(0) ---->[bs, C, W, H]

\[bs,C,W,H\], \[bs,C,W,H\],...

stack(0)---->[N * bs, C,W,H]
1和2的逻辑肯定是不一样的,跟view或者reshape无关,就是对mean(0)方法理解不到位。

出错肯定是自己对一些东西的理解出错了,肯定是想当然了 ,那就去一点点排查到底哪里出错了。
mean(dim)方法

bash 复制代码
tensor = torch.randn(3, 4, 5)
mean_along_dim1 = tensor.mean(1)
print(mean_along_dim1.shape)  # 应该输出 torch.Size([3, 5])

mean_along_dim1[i, j] 是原始张量 tensor[i, :, j] 中所有元素的均值。

直观的操作相当于:[i,0,j]+[i,1,j]+[i,2,j]+[i,3,j] / 4 ---> [i,j],i,j为某一固定实数

所以:

T, N\* bs,C,W,H

mean(0) ---->[N* bs, C,W,H]
这个过程把N考虑进来一起加,肯定是不对的。

三、杂

  1. label_onehot = F.one_hot(label, 10).float()

    RuntimeError: one_hot is only applicable to index tensor.

    PyTorch 中的索引张量必须包含整数值。确保 label 是一个整数张量,可以通过使用 .long()

  2. squeeze是要赋值的,除了extend都要赋值

    lua 复制代码
    label_onehot = label_onehot.squeeze(1)
  3. 命令:pip3 show

相关推荐
没学上了5 小时前
CNNMNIST
人工智能·深度学习
宝贝儿好6 小时前
【强化学习】第六章:无模型控制:在轨MC控制、在轨时序差分学习(Sarsa)、离轨学习(Q-learning)
人工智能·python·深度学习·学习·机器学习·机器人
AI产品备案6 小时前
生成式人工智能大模型备案制度与发展要求
人工智能·深度学习·大模型备案·算法备案·大模型登记
黑客思维者8 小时前
机器学习071:深度学习【卷积神经网络】目标检测“三剑客”:YOLO、SSD、Faster R-CNN对比
深度学习·yolo·目标检测·机器学习·cnn·ssd·faster r-cnn
北山小恐龙8 小时前
卷积神经网络(CNN)与Transformer
深度学习·cnn·transformer
汗流浃背了吧,老弟!8 小时前
为什么RAG在多轮对话中可能表现不佳?
人工智能·深度学习
糖葫芦君9 小时前
RQ-VAE(残差量化-变分自编码器)
人工智能·深度学习
yj_sharing10 小时前
动手学深度学习softmax回归的笔记
笔记·深度学习·回归
温柔只给梦中人10 小时前
深度学习:day03-04
人工智能·深度学习
棒棒的皮皮10 小时前
【深度学习】YOLO 模型部署全攻略(本地 / 嵌入式 / 移动端)
人工智能·深度学习·yolo·计算机视觉