空转学习 | cell-level 与 spot-level的区别

问题来源于读NicheCompass时,对cell-level 与 spot-level概念的迷惑Quantitative characterization of cell niches in spatially resolved omics data | Nature Genetics

  1. 图例说明(图 1a 及对应正文)
    Birk et al. (2025)[1] 在图 1a 的图注中写道:

"NicheCompass takes single-sample or multi-sample spatial omics data with cell-level or spot-level observations as input... each cell or spot representing a node."

此处直接给出了两种输入粒度:单细胞(cell-level)与捕获点(spot-level)。

2.数据集描述部分(Methods 段:Data exclusions 与 Experiments)

在介绍所用数据时,作者列表指出:

"The Spatial ATAC--RNA seq mouse brain dataset included 9,215 spot-level observations ... The Stereo-seq mouse embryo dataset included 5,913 spot-level observations 。"

对比之下,其他如 seqFISH、STARmap PLUS 等则被称为"cell-level"或接近单细胞分辨率的数据。这进一步说明了"spot-level"与"cell-level"是两类不同分辨率的数据来源。

在空间组学(spatial omics)数据中,单细胞(cell-level)和 spot(spot-level)这两种观测尺度的主要区别体现在以下三方面,文献均在正文中给出了相应示例:

  1. 分辨率与数据精度
    • 单细胞分辨率(cell-level)------每个观测节点对应一个完整细胞,因而能够直接捕获个体细胞的转录组甚至多组学特征,分辨精度为亚细胞级。
    • Spot 分辨率(spot-level)------观测节点是"捕获区",其直径或像素大小通常在 10--100 µm(典型如 Visium、Stereo-seq,见作者原文 Methods 和数据描述[方法部分]),一个 spot 往往包含数个到数十个细胞的混合信号。
  2. 基因/特征数量与缺失率
    • 单细胞数据集常可获得全转录组覆盖(作者所用 Slide-seqV2 记录约 4,000 基因[方法数据描述]),且表达矩阵稀疏但真实。
    • Spot 数据为混合信号,基因总数通常更高(如 Spatial ATAC--RNA-seq 小鼠大脑使用 22,914 基因[方法数据描述]),但因整合多细胞,单个 spot 内基因的"真实来源"需要后期解卷积。
  3. 在 NicheCompass 建模中的处理策略
    • 图构建:两种数据均可构建 k-近邻邻居图;对 spot 数据,作者指出"需进行 spot deconvolution"才能进一步提升结果(Discussion[讨论中(4)])。
    • 模型表现:作者在补充图 14 及补充说明第 9 点(Supplementary Note 9)测试发现,NicheCompass 在 spot 尺度上的 niche coherence 和 spatial consistency 得分略低于同组织细胞级数据,原因在于混合信号稀释了真实信号。
    综上,单细胞尺度提供"真值"级别细胞信息,适合精确研究 niche 边界和通信细节;spot 尺度提供组织上下文的大规模全景,但需额外解卷积或使用混合建模策略来弥补细胞异质性丢失。
相关推荐
007tg3 小时前
从ChatGPT家长控制功能看AI合规与技术应对策略
人工智能·chatgpt·企业数据安全
Memene摸鱼日报3 小时前
「Memene 摸鱼日报 2025.9.11」腾讯推出命令行编程工具 CodeBuddy Code, ChatGPT 开发者模式迎来 MCP 全面支持
人工智能·chatgpt·agi
linjoe994 小时前
【Deep Learning】Ubuntu配置深度学习环境
人工智能·深度学习·ubuntu
先做个垃圾出来………5 小时前
残差连接的概念与作用
人工智能·算法·机器学习·语言模型·自然语言处理
AI小书房5 小时前
【人工智能通识专栏】第十三讲:图像处理
人工智能
fanstuck6 小时前
基于大模型的个性化推荐系统实现探索与应用
大数据·人工智能·语言模型·数据挖掘
多看书少吃饭7 小时前
基于 OpenCV 的眼球识别算法以及青光眼算法识别
人工智能·opencv·计算机视觉
一条数据库7 小时前
南京方言数据集|300小时高质量自然对话音频|专业录音棚采集|方言语音识别模型训练|情感计算研究|方言保护文化遗产数字化|语音情感识别|方言对话系统开发
人工智能·音视频·语音识别
Yingjun Mo7 小时前
1. 统计推断-基于神经网络与Langevin扩散的自适应潜变量建模与优化
人工智能·神经网络·算法·机器学习·概率论