07 手写 BA 优化

07 手写 BA 优化

原理见笔记 《后端 1》

世界坐标系 --> 相机坐标系(外参)--> 归一化坐标 --> 去畸变 --> 像素坐标系(内参)

由此得到的估计值与实际观测到的像素坐标作差,得到二维误差项。

7.1 误差及雅可比矩阵

7.2 Ceres BA 优化

注意残差块的维度:待优化变量分成两块,相机内外参和空间点坐标;残差为像素理论值与实际值之差,为2维。

c++ 复制代码
/*****
 * 计算重投影误差项
 * 定义误差项
*/

#ifndef SNAVELYREPROJECTIONERROR_H
#define SNAVELYREPROJECTIONERROR_H

#include <iostream>
#include <ceres/ceres.h>
#include "common/projection.h"
#include "common/tools/rotation.h"

// 误差项,仿函数
// observation_x, observation_y 实际值
class SnavelyReprojectionError
{
public:
    SnavelyReprojectionError(double observation_x, double observation_y) : observed_x(observation_x), observed_y(observation_y) {}

    template<typename T>

    // 待优化变量分为两块:camera 内外参 9 维; point 空间点 3 维
    // 残差为 2 维
    bool operator()(const T* const camera, const T* const point, T* residuals)
    {
        T predictions[2];
        CamProjectionWithDistortion(camera, point, predictions);         // 计算理论值
        residuals[0] = predictions[0] - observed_x;
        residuals[1] = predictions[1] - observed_y;

        return true;
    }


    static ceres::CostFunction* Create(const double observed_x, const double observed_y)
    {
        // 使用自动求导,模板参数:误差类型,输出维度2,输入维度 9 + 3
        return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(
            new SnavelyReprojectionError(observed_x, observed_y)));
    }

private:
    double observed_x;
    double observed_y;
};

#endif

7.3 g2o BA 优化

两个顶点,分别表示相机内外参(9维)、空间点(3维),边为二元边,连接两个顶点。

c++ 复制代码
// 相机顶点 9 维
class VertexCameraBAL : public g2o::BaseVertex<9, Eigen::VectorXd>
{
    
};

// 空间点 3 维
class VertexPointBAL : public g2o::BaseVertex<3, Eigen::Vector3d>
{
    
};

// 定义二元边
// 误差维度2, 误差类型Eigen::Vector2d, 连接两种顶点
class EdgeObservationBAL : public g2o::BaseBinaryEdge<2, Eigen::Vector2d, VertexCameraBAL, VertexPointBAL>
{

};
相关推荐
studytosky20 小时前
深度学习理论与实战:反向传播、参数初始化与优化算法全解析
人工智能·python·深度学习·算法·分类·matplotlib
WolfGang00732120 小时前
代码随想录算法训练营Day48 | 108.冗余连接、109.冗余连接II
数据结构·c++·算法
努力学算法的蒟蒻20 小时前
day35(12.16)——leetcode面试经典150
算法·leetcode·面试
cccc来财20 小时前
角点检测算法:Harris 和 FAST 方法
算法·计算机视觉·特征提取
风中月隐21 小时前
C语言中以坐标的方式图解“字母金字塔”的绘制
c语言·开发语言·算法·字母金子塔·坐标图解法
q_302381955621 小时前
告别“笨重”检测!VA-YOLO算法让疲劳驾驶识别更轻更快更准
算法·yolo
松涛和鸣21 小时前
DAY32 Linux Thread Programming
linux·运维·数据库·算法·list
LYFlied21 小时前
【每日算法】LeetCode 234. 回文链表详解
算法·leetcode·链表
NeDon21 小时前
[OJ]数据结构:移除链表元素
c语言·数据结构·算法·链表
刃神太酷啦21 小时前
C++ list 容器全解析:从构造到模拟实现的深度探索----《Hello C++ Wrold!》(16)--(C/C++)
java·c语言·c++·qt·算法·leetcode·list