Ray构建GPU隔离的机器学习平台

Ray框架介绍

Ray 是一个开源分布式计算框架,在 机器学习基础设施中发挥着至关重要的作用。Ray 促进分布式机器学习训练,使机器学习从业者能够有效利用多个 GPU 的能力。

Ray可以在集群上分布式地运行任务,并且可以指定任务运行时需要使用的GPU数量。Ray可与Nvidia-docker等技术相结合,以实现在使用Ray进行分布式计算时,每个任务都在自己的隔离环境中。

Ray 最显着的优势之一是它能够无缝扩展 ML 工作负载。无论您是训练具有数十亿参数的模型还是执行复杂的计算,Ray 都能提供必要的弹性。这种可扩展性确保了即使模型规模和复杂性增加,机器学习模型也能快速有效地进行训练。

机器学习平台

Ray 及其 AI 库为希望简化 ML 平台的团队提供统一的计算运行时。Ray 的库(例如 Ray Train、Ray Data 和 Ray Serve)可用于组成端到端 ML 工作流程,提供用于数据预处理(作为训练的一部分)以及从训练过渡到服务的功能和 API。

Ray Core

相关推荐
速融云1 小时前
汽车制造行业案例 | 发动机在制造品管理全解析(附解决方案模板)
大数据·人工智能·自动化·汽车·制造
金融OG1 小时前
99.11 金融难点通俗解释:净资产收益率(ROE)VS投资资本回报率(ROIC)VS总资产收益率(ROA)
大数据·python·算法·机器学习·金融
AI明说2 小时前
什么是稀疏 MoE?Doubao-1.5-pro 如何以少胜多?
人工智能·大模型·moe·豆包
XianxinMao2 小时前
重构开源LLM分类:从二分到三分的转变
人工智能·语言模型·开源
Elastic 中国社区官方博客2 小时前
使用 Elasticsearch 导航检索增强生成图表
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
云天徽上3 小时前
【数据可视化】全国星巴克门店可视化
人工智能·机器学习·信息可视化·数据挖掘·数据分析
大嘴吧Lucy3 小时前
大模型 | AI驱动的数据分析:利用自然语言实现数据查询到可视化呈现
人工智能·信息可视化·数据分析
艾思科蓝 AiScholar3 小时前
【连续多届EI稳定收录&出版级别高&高录用快检索】第五届机械设计与仿真国际学术会议(MDS 2025)
人工智能·数学建模·自然语言处理·系统架构·机器人·软件工程·拓扑学
watersink4 小时前
面试题库笔记
大数据·人工智能·机器学习
Yuleave4 小时前
PaSa:基于大语言模型的综合学术论文搜索智能体
人工智能·语言模型·自然语言处理