Ray构建GPU隔离的机器学习平台

Ray框架介绍

Ray 是一个开源分布式计算框架,在 机器学习基础设施中发挥着至关重要的作用。Ray 促进分布式机器学习训练,使机器学习从业者能够有效利用多个 GPU 的能力。

Ray可以在集群上分布式地运行任务,并且可以指定任务运行时需要使用的GPU数量。Ray可与Nvidia-docker等技术相结合,以实现在使用Ray进行分布式计算时,每个任务都在自己的隔离环境中。

Ray 最显着的优势之一是它能够无缝扩展 ML 工作负载。无论您是训练具有数十亿参数的模型还是执行复杂的计算,Ray 都能提供必要的弹性。这种可扩展性确保了即使模型规模和复杂性增加,机器学习模型也能快速有效地进行训练。

机器学习平台

Ray 及其 AI 库为希望简化 ML 平台的团队提供统一的计算运行时。Ray 的库(例如 Ray Train、Ray Data 和 Ray Serve)可用于组成端到端 ML 工作流程,提供用于数据预处理(作为训练的一部分)以及从训练过渡到服务的功能和 API。

Ray Core

相关推荐
Coovally AI模型快速验证11 小时前
MAR-YOLOv9:革新农业检测,YOLOv9的“低调”逆袭
人工智能·神经网络·yolo·计算机视觉·cnn
云和数据.ChenGuang11 小时前
AI运维工程师技术教程之Linux环境下部署Deepseek
linux·运维·人工智能
cvyoutian11 小时前
解决 PyTorch 大型 wheel 下载慢、超时和反复重下的问题
人工智能·pytorch·python
oliveray12 小时前
解决开放世界目标检测问题——Grounding DINO
人工智能·目标检测·计算机视觉
子非鱼92112 小时前
3 传统序列模型——RNN
人工智能·rnn·深度学习
万俟淋曦12 小时前
【论文速递】2025年第33周(Aug-10-16)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
卢卡上学12 小时前
【AI工具】Coze智能体工作流:5分钟制作10个10w+治愈视频,无需拍摄剪辑
人工智能·音视频·ai视频·ai智能体
玦尘、12 小时前
《统计学习方法》第6章——逻辑斯谛回归与最大熵模型(上)【学习笔记】
机器学习·回归·学习方法
共绩算力12 小时前
Maya多模态模型支持8国语言
人工智能·maya·共绩算力
乾元12 小时前
SDN 与 AI 协同:控制面策略自动化与策略一致性校验
运维·网络·人工智能·网络协议·华为·系统架构·ansible