Ray构建GPU隔离的机器学习平台

Ray框架介绍

Ray 是一个开源分布式计算框架,在 机器学习基础设施中发挥着至关重要的作用。Ray 促进分布式机器学习训练,使机器学习从业者能够有效利用多个 GPU 的能力。

Ray可以在集群上分布式地运行任务,并且可以指定任务运行时需要使用的GPU数量。Ray可与Nvidia-docker等技术相结合,以实现在使用Ray进行分布式计算时,每个任务都在自己的隔离环境中。

Ray 最显着的优势之一是它能够无缝扩展 ML 工作负载。无论您是训练具有数十亿参数的模型还是执行复杂的计算,Ray 都能提供必要的弹性。这种可扩展性确保了即使模型规模和复杂性增加,机器学习模型也能快速有效地进行训练。

机器学习平台

Ray 及其 AI 库为希望简化 ML 平台的团队提供统一的计算运行时。Ray 的库(例如 Ray Train、Ray Data 和 Ray Serve)可用于组成端到端 ML 工作流程,提供用于数据预处理(作为训练的一部分)以及从训练过渡到服务的功能和 API。

Ray Core

相关推荐
大千AI助手17 小时前
灾难性遗忘:神经网络持续学习的核心挑战与解决方案
人工智能·深度学习·神经网络·大模型·llm·持续学习·灾难性遗忘
gotouniverse17 小时前
之前自学RAG时做的调研
人工智能
新智元17 小时前
刚刚,英伟达祭出下一代 GPU!狂飙百万 token 巨兽,投 1 亿爆赚 50 亿
人工智能·openai
霍格沃兹_测试17 小时前
从零开始搭建Qwen智能体:新手也能轻松上手指南
人工智能
SmartJavaAI17 小时前
Java调用Whisper和Vosk语音识别(ASR)模型,实现高效实时语音识别(附源码)
java·人工智能·whisper·语音识别
山东小木17 小时前
JBoltAI需求分析大师:基于SpringBoot的大模型智能需求文档生成解决方案
人工智能·spring boot·后端·需求分析·jboltai·javaai·aigs
君名余曰正则17 小时前
【竞赛系列】机器学习实操项目08——全球城市计算AI挑战赛(数据可视化分析)
人工智能·机器学习·信息可视化
算家计算17 小时前
一张图+一段音频=电影级视频!阿里Wan2.2-S2V-14B本地部署教程:实现丝滑口型同步
人工智能·开源·aigc
XINVRY-FPGA17 小时前
XCVP1902-2MSEVSVA6865 AMD 赛灵思 XilinxVersal Premium FPGA
人工智能·嵌入式硬件·神经网络·fpga开发·云计算·腾讯云·fpga
算家计算17 小时前
多年AI顽疾被攻克!OpenAI前CTO团队破解AI随机性难题,大模型可靠性迎来飞跃
人工智能·llm·资讯