正文共:2222 字 19 图,预估阅读时间:3 分钟
目录
css
0、序言
1、Windows系统中的网络
1.1、桌面中的网卡
1.2、命令行中的网卡
1.3、路由表
1.4、家用路由器
css
2、认识企业设备
2.1、MSR810-W外观
2.2、登录MSR810-W管理页面
2.3、快速设置上网
2.4、WLAN配置
2.5、LTE模块配置
2.6、MSR810-W高级设置
css
3、认识设备命令行
3.1、通过Console接口登录设备
3.2、远程登录设备
3.3、Comware系统的基本命令
3.4、MSR810-W配置解读
3.5、MSR810-W初始化配置
css
4、认识网络模拟器
4.1、HCL华三云实验室
4.2、eNSP企业网络模拟平台
4.3、Cisco Packet Tracer
4.4、EVE-NG
4.4.1、从OVF导入部署到ESXi
4.4.2、使用ISO安装到WorkStation
4.4.3、EVE-NG导入iol镜像
4.4.4、EVE-NG导入qemu镜像
css
4.5、虚拟化环境VMware ESXi
4.5.1、定制ESXi 6.7安装镜像
4.5.2、部署ESXi 6.7
4.5.3、ESXi 6.7升级ESXi 7.0
4.5.4、vCenter纳管ESXi主机
4.6、虚拟化环境CAS
4.6.1、部署CVM管理节点
4.6.2、部署CVK计算节点
4.6.3、CVM纳管CVK节点
4.7、网络功能虚拟化NFV
4.7.1、部署NFV
4.7.2、配置NFV网络
4.7.3、NFV设备初始配置
css
5、基础网络实验
5.1、简单网络环境搭建与测试
5.2、网络设备基本连接与调试
5.3、ARP协议
5.4、DHCP报文交互过程
5.5、DHCP基础实验
5.6、DHCP进阶实验
5.7、VLAN基础实验
5.8、VLAN进阶实验
6、以太网交换基础实验
学习过了基础的网络实验配置,我们应该对网络实验有了简单的了解。接下来,我们继续学习交换机相关的二层技术配置,在H3C认证课程中,该系列课程为构建高性能园区网络,我们先介绍其中比较简单的部分。
6.1、生成树协议
前面介绍VLAN的时候**(** 网络之路24:VLAN基础实验),我们提过,如果在实际网络环境中,因为接线不当等原因,可能会出现网络环路的情况。
大概像上图这样,多台设备首尾相连,此时广播报文就会在几台设备之间不断传播,在传播的同时又在生成新的报文。在这种网络中,过不了多久,网络里的流量就达到设备的性能瓶颈了,出现性能显著下降,甚至网络不可用等问题,影响正常业务报文的转发;这种情况,我们一般称之为**"广播风暴"**。
我们一般将交换机分为傻瓜交换机(二层交换机)和可管理交换机(三层交换机),可管理交换机大部分都可以支持STP(Spanning Tree Protocol,生成树协议),生成树协议是一种二层管理协议,它通过选择性地阻塞网络中的冗余链路来消除二层环路,同时还具备链路备份的功能。
然后我们使用HCL构造一个下图这样的网络拓扑**(** 网络之路11:认识网络设备模拟器HCL)。
在不区分VLAN的情况下,要从PC4访问到PC6,可能的路径有以下3条:
1、PC4→SW1→GE0/1→SW2→PC6
2、PC4→SW1→GE0/4→SW2→PC6
3、PC4→SW1→GE0/2→SW3→SW2→PC6
同时我们也能明显的看到,图里面存在环路,此时STP就派上用场了。在H3C的交换机设备上,默认是全局开启了STP的,我们可以通过命令进行查看。
STP采用的协议报文是BPDU(Bridge Protocol Data Unit,桥协议数据单元),也称为配置消息,STP通过在设备之间传递BPDU来确定网络的拓扑结构,同时确定端口的角色和状态。STP的端口状态有3种,主要状态为Forwarding(该状态下的端口可以接收和发送BPDU,也转发用户流量)和Discarding(该状态下的端口可以接收和发送BPDU,但不转发用户流量),还有一种过渡状态Learning,该状态下的端口可以接收和发送BPDU,但不转发用户流量。
我们看一下SW2的端口角色和状态。
再看一下SW3的端口角色和状态。
那么此时的链路状态如下所示:
一共4条链路,SW2和SW3的互联线路不转发数据,SW1和SW2的其中一条互联线路不转发数据,虽然接口的物理状态还是UP的,但现在逻辑上已经不存在环路了。
然后我们看一下SW2上出现的3种端口角色:
1、GE1/0/1为根端口(Root Port),对应Role为ROOT,是指非根桥设备上离根桥最近的端口,用于在非根桥上负责向根桥方向转发数据。那什么是根桥呢?STP认为树形的网络结构必须有树根,于是便引入了根桥的概念,根桥会根据网络拓扑的变化实时选举改变,但是一个STP中有且只有一个根桥,其他设备则称为叶子结点。以此拓扑为例,非根桥设备SW2和SW3上有且只有一个根端口,而根桥设备SW1上没有根端口。
2、GE1/0/2为指定端口(Designated Port),对应Role为DESI,与根端口相反,指定端口负责向下游网段或设备转发数据的端口。
3、GE1/0/4为替换端口(Alternate Port),对应Role为ALTE,是根端口(STP)和主端口(MST)的备份端口。当根端口或主端口被阻塞后,替换端口将成为新的根端口或主端口。
通过命令,我们可以查看生成树端口角色计算的历史信息。
我们可以看到接口GE1/0/1的变化过程为DISA→DESI→ROOT,而GE1/0/4的变化过程为DISA→DESI→ALTE,这就说明了根桥的选举过程。
在网络初始化过程中,所有设备都视自己为根桥,生成各自的配置BPDU并周期性地向外发送,BPDU的关键信息包括根桥ID、根路径开销、指定桥ID、指定端口ID等等,通过前面的计算历史我们可以看出,这些ID基本上都由端口的优先级和MAC地址组成。缺省情况下,设备的优先级都是32768,端口的优先级都是128,所以根桥一般都是由MAC地址确定的。只要设备的生产符合规则,没有任何两台设备的MAC地址是一样的,所以MAC地址小的设备发送的BPDU优先级就会更高,在选举的第一步就会直接选举成为根桥,也就不会进入到根路径开销等选举过程。当网络拓扑稳定以后,只有根桥设备才会向外发送配置BPDU,其他设备则对其进行转发。
以SW1为例,它的根桥ID就是32768.acb6-e75e-0100,因为它是第一台创建的设备,正常来讲它的MAC地址就是最小的。同时我们可以看到BPDU的发送周期Hello Time为2秒,那我们接下来就可以测一下STP的链路备份功能了。
现在计算PC4到PC6的路径为PC4→SW1→GE0/1→SW2→PC6,那么我们在PC4上发起长ping,然后DOWN掉SW1的GE1/0/1接口,看看报文的中断情况。
一个报文都没丢,我们看一下SW2的状态变化。
从日志来看,整个切换过程一共只有5 MS。
从生成树端口角色计算的历史信息来看,接口GE1/0/1的状态DOWN掉之后,接口GE1/0/4马上切换为ROOT根端口,负责向根桥SW1方向转发数据,使得业务中断未引起明显的业务感知。
此时,网络中还存在一条冗余链路呢。
我们查看SW3的端口状态,此时GE1/0/1仍然是替换端口,PC4到PC6的路径为PC4→SW1→GE0/4→SW2→PC6。
那么我们在PC4上发起长ping,然后DOWN掉SW2的GE1/0/4接口,看看报文的中断情况。
一个报文都没丢,我们看一下SW2的状态变化。
看一下SW3的端口角色计算历史信息,SW2的接口的状态变化之后,SW3的接口GE1/0/1马上切换为DESI指定端口,负责向下游设备SW2转发数据的端口转发数据,使得业务中断未引起明显的业务感知。
通过两次测试,均没有丢包,也没有引起明显的时延跳变,说明STP的收敛速度确实很快。然后我们把两个接口都恢复,再看看生成树的状态会变成什么样。
状态也是很快就切换了,没有丢包也没有引起明显的时延跳变,SW2的端口角色和状态与之前完全一致。
SW3的端口角色和状态也与之前完全一致。只是收敛速度太快,都看不到LEARNING的状态,而且日志也没有记录,只有TC的报文,谁能给个显示状态变化日志的方法?
长按二维码
关注我们吧
简单了解一下FortiFirewall、FortiGate和FortiOS的试用授权情况
不用猜了,FortiGate和FortiOS都是永久授权,而FortiFirewall没有试用授权
FortiOS和FortiGate除了在功能上的细微差异,性能差别大吗?
H3C iMC智能管理中心平台PLAT(7.2_E0403)部署实验
H3C iMC智能管理中心平台PLAT部署EIA/UAM/TAM组件