LLaMA-Factory微调ChatGLM3报错: Segmentation fault (core dumped)

SFT训练模型的命令

CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path models/chatglm3-6b \
    --do_train \
    --dataset self_cognition \
    --template chatglm3 \
    --finetuning_type lora \
    --lora_target query_key_value \
    --output_dir output/chatglm3_sft_lora_self/ \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 200 \
    --learning_rate 5e-5 \
    --num_train_epochs 100 \
    --plot_loss \
    --fp16

模型基座是下载正确的,torch.cuda.is_available()也是True

训练报错:

11/21/2023 09:11:23 - INFO - llmtuner.data.loader - Loading dataset self_cognition.json...
Using custom data configuration default-aaabbbccc
Loading Dataset Infos from /usr/local/lib/python3.10/site-packages/datasets/packaged_modules/json
Generating dataset json (/root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900)
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 6364.65it/s]
Downloading took 0.0 min
Checksum Computation took 0.0 min
Extracting data files:   0%|                                                      | 0/1 [00:00<?, ?it/s]train.sft.1gpu.lora.fp16.self.sh: line 19:  2551 Segmentation fault      (core dumped) CUDA_VISIBLE_DEVICES=0 python src/train_bash.py --stage sft --model_name_or_path models/chatglm3-6b --do_train --dataset self_cognition --template chatglm3 --finetuning_type lora --lora_target query_key_value --output_dir output/chatglm3_sft_lora_self/ --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 200 --learning_rate 5e-5 --num_train_epochs 100 --plot_loss --fp16

调试

  • 用pycharm,跟踪入口,从src/train_bash.py进去,一步一步看
  • 根据报错log,找到"Loading dataset {}..."
  • 然后加断点,单步调试

调试后定位到:Segmentation fault (core dumped)是在 运行 datasets的 load_dataset() 函数发生的,单独调用这个函数也复现问题了: https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llmtuner/data/loader.py#L56

试了好几个和datasets的Segmentation fault (core dumped)报错相关的修复方案,都也没有解决,包括网上搜到要更新一些相关库的版本,也都不行。

最终从报错的ubuntu18.04切换到20.04,换了个操作系统,就没有这个报错了

相关推荐
wuhanwhite1 小时前
2025:OpenAI的“七十二变”?
人工智能·openai·语音识别
XianxinMao2 小时前
BitNet a4.8:通过4位激活实现1位大语言模型的高效内存推理
人工智能·语言模型·自然语言处理
一水鉴天2 小时前
智能工厂的设计软件 应用场景的一个例子:为AI聊天工具添加一个知识系统 之11 方案再探之2 项目文件(修改稿1)
人工智能
KeyPan2 小时前
【视觉SLAM:八、后端Ⅰ】
人工智能·数码相机·算法·机器学习·计算机视觉
好评笔记3 小时前
多模态论文笔记——Coca(副)
论文阅读·人工智能·深度学习·计算机视觉·transformer·coca·dalle2
好评笔记3 小时前
多模态论文笔记——Coca
人工智能·深度学习·计算机视觉·aigc·transformer·多模态·coca
何大春3 小时前
Quo Vadis, Anomaly Detection? LLMs and VLMs in the Spotlight 论文阅读
论文阅读·人工智能·深度学习·论文笔记
Jackilina_Stone3 小时前
【论文阅读笔记】SCI算法与代码 | 低照度图像增强 | 2022.4.21
论文阅读·人工智能·笔记·python·算法·计算机视觉
图王大胜4 小时前
模型 九屏幕分析法
人工智能·解决方案·管理·决策·战略规划·企业发展·分析方法
程序猿阿伟4 小时前
《量子AI:突破量子比特稳定性与容错性的关键瓶颈》
运维·人工智能·自动化