LLaMA-Factory微调ChatGLM3报错: Segmentation fault (core dumped)

SFT训练模型的命令

复制代码
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path models/chatglm3-6b \
    --do_train \
    --dataset self_cognition \
    --template chatglm3 \
    --finetuning_type lora \
    --lora_target query_key_value \
    --output_dir output/chatglm3_sft_lora_self/ \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 200 \
    --learning_rate 5e-5 \
    --num_train_epochs 100 \
    --plot_loss \
    --fp16

模型基座是下载正确的,torch.cuda.is_available()也是True

训练报错:

复制代码
11/21/2023 09:11:23 - INFO - llmtuner.data.loader - Loading dataset self_cognition.json...
Using custom data configuration default-aaabbbccc
Loading Dataset Infos from /usr/local/lib/python3.10/site-packages/datasets/packaged_modules/json
Generating dataset json (/root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900)
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 6364.65it/s]
Downloading took 0.0 min
Checksum Computation took 0.0 min
Extracting data files:   0%|                                                      | 0/1 [00:00<?, ?it/s]train.sft.1gpu.lora.fp16.self.sh: line 19:  2551 Segmentation fault      (core dumped) CUDA_VISIBLE_DEVICES=0 python src/train_bash.py --stage sft --model_name_or_path models/chatglm3-6b --do_train --dataset self_cognition --template chatglm3 --finetuning_type lora --lora_target query_key_value --output_dir output/chatglm3_sft_lora_self/ --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 200 --learning_rate 5e-5 --num_train_epochs 100 --plot_loss --fp16

调试

  • 用pycharm,跟踪入口,从src/train_bash.py进去,一步一步看
  • 根据报错log,找到"Loading dataset {}..."
  • 然后加断点,单步调试

调试后定位到:Segmentation fault (core dumped)是在 运行 datasets的 load_dataset() 函数发生的,单独调用这个函数也复现问题了: https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llmtuner/data/loader.py#L56

试了好几个和datasets的Segmentation fault (core dumped)报错相关的修复方案,都也没有解决,包括网上搜到要更新一些相关库的版本,也都不行。

最终从报错的ubuntu18.04切换到20.04,换了个操作系统,就没有这个报错了

相关推荐
只说证事14 小时前
2025年数字公共治理专业重点学什么内容?(详细指南)
人工智能
LeeZhao@14 小时前
【AI推理部署】Docker篇04—Docker自动构建镜像
人工智能·docker·容器
程思扬14 小时前
利用JSONCrack与cpolar提升数据可视化及跨团队协作效率
网络·人工智能·经验分享·docker·信息可视化·容器·架构
南方者14 小时前
它的 AI Agent 凭什么能擦出火花?!
人工智能·ai编程
心动啊12114 小时前
深度神经网络1——梯度问题+标签数不够问题
人工智能·神经网络·dnn
南方者14 小时前
基于Amazon Bedrock Agent 的两个服务示例的完整流程与详细内容,包含技术架构、实现细节、交互逻辑及扩展能力
人工智能·ai编程·敏捷开发
小王爱学人工智能14 小时前
OpenCV一些进阶操作
人工智能·opencv·计算机视觉
新智元14 小时前
起猛了!这个国家任命 AI 为「部长」:全球首个,手握实权,招标 100% 透明
人工智能·openai
张较瘦_14 小时前
[论文阅读] 人工智能 + 软件工程 | 大语言模型驱动的多来源漏洞影响库识别研究解析
论文阅读·人工智能·语言模型
艾醒14 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法