LLaMA-Factory微调ChatGLM3报错: Segmentation fault (core dumped)

SFT训练模型的命令

复制代码
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path models/chatglm3-6b \
    --do_train \
    --dataset self_cognition \
    --template chatglm3 \
    --finetuning_type lora \
    --lora_target query_key_value \
    --output_dir output/chatglm3_sft_lora_self/ \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 200 \
    --learning_rate 5e-5 \
    --num_train_epochs 100 \
    --plot_loss \
    --fp16

模型基座是下载正确的,torch.cuda.is_available()也是True

训练报错:

复制代码
11/21/2023 09:11:23 - INFO - llmtuner.data.loader - Loading dataset self_cognition.json...
Using custom data configuration default-aaabbbccc
Loading Dataset Infos from /usr/local/lib/python3.10/site-packages/datasets/packaged_modules/json
Generating dataset json (/root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900)
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 6364.65it/s]
Downloading took 0.0 min
Checksum Computation took 0.0 min
Extracting data files:   0%|                                                      | 0/1 [00:00<?, ?it/s]train.sft.1gpu.lora.fp16.self.sh: line 19:  2551 Segmentation fault      (core dumped) CUDA_VISIBLE_DEVICES=0 python src/train_bash.py --stage sft --model_name_or_path models/chatglm3-6b --do_train --dataset self_cognition --template chatglm3 --finetuning_type lora --lora_target query_key_value --output_dir output/chatglm3_sft_lora_self/ --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 200 --learning_rate 5e-5 --num_train_epochs 100 --plot_loss --fp16

调试

  • 用pycharm,跟踪入口,从src/train_bash.py进去,一步一步看
  • 根据报错log,找到"Loading dataset {}..."
  • 然后加断点,单步调试

调试后定位到:Segmentation fault (core dumped)是在 运行 datasets的 load_dataset() 函数发生的,单独调用这个函数也复现问题了: https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llmtuner/data/loader.py#L56

试了好几个和datasets的Segmentation fault (core dumped)报错相关的修复方案,都也没有解决,包括网上搜到要更新一些相关库的版本,也都不行。

最终从报错的ubuntu18.04切换到20.04,换了个操作系统,就没有这个报错了

相关推荐
m0_635129267 分钟前
身智能-一文详解视觉-语言-动作(VLA)大模型(3)
人工智能·机器学习
知行力11 分钟前
AI一周资讯 251108-251114
人工智能·chatgpt
迦蓝叶17 分钟前
RDF 与 RDFS:知识图谱推理的基石
java·人工智能·数据挖掘·知识图谱·语义网·rdf·rdfs
DisonTangor32 分钟前
【百度拥抱开源】介绍ERNIE-4.5-VL-28B-A3B-Thinking:多模态AI的重大突破
人工智能·百度·语言模型·开源·aigc
F_D_Z1 小时前
【解决办法】报错Found dtype Long but expected Float
人工智能·python
pen-ai1 小时前
【高级机器学习】 12. 强化学习,Q-learning, DQN
人工智能·机器学习
受之以蒙1 小时前
Rust ndarray 高性能计算:从元素操作到矩阵运算的优化实践
人工智能·笔记·rust
野生面壁者章北海1 小时前
NeurIPS 2024|大语言模型高保真文本水印新范式
人工智能·语言模型·自然语言处理
KG_LLM图谱增强大模型1 小时前
如何利用大语言模型(LLM)实现自动标注与内容增强
人工智能·知识管理·内容管理·本体论·图谱增强大模型·自动标签·大模型内容标注
数据与后端架构提升之路2 小时前
小鹏VLA 2.0的“神秘涌现”:从痛苦到突破,自动驾驶与机器人如何突然“开窍”?
人工智能·机器人·自动驾驶