LLaMA-Factory微调ChatGLM3报错: Segmentation fault (core dumped)

SFT训练模型的命令

复制代码
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path models/chatglm3-6b \
    --do_train \
    --dataset self_cognition \
    --template chatglm3 \
    --finetuning_type lora \
    --lora_target query_key_value \
    --output_dir output/chatglm3_sft_lora_self/ \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 200 \
    --learning_rate 5e-5 \
    --num_train_epochs 100 \
    --plot_loss \
    --fp16

模型基座是下载正确的,torch.cuda.is_available()也是True

训练报错:

复制代码
11/21/2023 09:11:23 - INFO - llmtuner.data.loader - Loading dataset self_cognition.json...
Using custom data configuration default-aaabbbccc
Loading Dataset Infos from /usr/local/lib/python3.10/site-packages/datasets/packaged_modules/json
Generating dataset json (/root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900)
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 6364.65it/s]
Downloading took 0.0 min
Checksum Computation took 0.0 min
Extracting data files:   0%|                                                      | 0/1 [00:00<?, ?it/s]train.sft.1gpu.lora.fp16.self.sh: line 19:  2551 Segmentation fault      (core dumped) CUDA_VISIBLE_DEVICES=0 python src/train_bash.py --stage sft --model_name_or_path models/chatglm3-6b --do_train --dataset self_cognition --template chatglm3 --finetuning_type lora --lora_target query_key_value --output_dir output/chatglm3_sft_lora_self/ --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 200 --learning_rate 5e-5 --num_train_epochs 100 --plot_loss --fp16

调试

  • 用pycharm,跟踪入口,从src/train_bash.py进去,一步一步看
  • 根据报错log,找到"Loading dataset {}..."
  • 然后加断点,单步调试

调试后定位到:Segmentation fault (core dumped)是在 运行 datasets的 load_dataset() 函数发生的,单独调用这个函数也复现问题了: https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llmtuner/data/loader.py#L56

试了好几个和datasets的Segmentation fault (core dumped)报错相关的修复方案,都也没有解决,包括网上搜到要更新一些相关库的版本,也都不行。

最终从报错的ubuntu18.04切换到20.04,换了个操作系统,就没有这个报错了

相关推荐
WWZZ20251 天前
快速上手大模型:深度学习7(实践:卷积层)
人工智能·深度学习·算法·机器人·大模型·卷积神经网络·具身智能
简佐义的博客1 天前
Genome Biol. IF 9.4 Q1 | ATAC-seq 数据分析实用指南,根据本文就可以构建ATAC生信分析流程了
人工智能
老蒋新思维1 天前
陈修超入局:解锁 AI 与 IP 融合的创新增长密码
网络·人工智能·网络协议·tcp/ip·企业管理·知识付费·创客匠人
San30.1 天前
从代码规范到 AI Agent:现代前端开发的智能化演进
javascript·人工智能·代码规范
DO_Community1 天前
基于AI Agent模板:快速生成 SQL 测试数据
人工智能·python·sql·ai·llm·ai编程
HeteroCat1 天前
关于No Chatbot的思考
人工智能
咚咚王者1 天前
人工智能之数据分析 numpy:第一章 学习链路
人工智能·数据分析·numpy
中杯可乐多加冰1 天前
数据分析案例详解:基于smardaten实现智慧交通运营指标数据分析展示
人工智能·低代码·数据分析·交通物流·智慧交通·无代码·大屏端
算家计算1 天前
对标ChatGPT!千问App正式上线:AI应用终局之战正在打响
人工智能·资讯