LLaMA-Factory微调ChatGLM3报错: Segmentation fault (core dumped)

SFT训练模型的命令

复制代码
CUDA_VISIBLE_DEVICES=0 python src/train_bash.py \
    --stage sft \
    --model_name_or_path models/chatglm3-6b \
    --do_train \
    --dataset self_cognition \
    --template chatglm3 \
    --finetuning_type lora \
    --lora_target query_key_value \
    --output_dir output/chatglm3_sft_lora_self/ \
    --overwrite_cache \
    --per_device_train_batch_size 4 \
    --gradient_accumulation_steps 4 \
    --lr_scheduler_type cosine \
    --logging_steps 10 \
    --save_steps 200 \
    --learning_rate 5e-5 \
    --num_train_epochs 100 \
    --plot_loss \
    --fp16

模型基座是下载正确的,torch.cuda.is_available()也是True

训练报错:

复制代码
11/21/2023 09:11:23 - INFO - llmtuner.data.loader - Loading dataset self_cognition.json...
Using custom data configuration default-aaabbbccc
Loading Dataset Infos from /usr/local/lib/python3.10/site-packages/datasets/packaged_modules/json
Generating dataset json (/root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900)
Downloading and preparing dataset json/default to /root/.cache/huggingface/datasets/json/default-aaabbbccc/0.0.0/34bc96c741b2e8a1f18598ffdd8bb11242116d54740a1d4f2a2872c7a28b6900...
Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 6364.65it/s]
Downloading took 0.0 min
Checksum Computation took 0.0 min
Extracting data files:   0%|                                                      | 0/1 [00:00<?, ?it/s]train.sft.1gpu.lora.fp16.self.sh: line 19:  2551 Segmentation fault      (core dumped) CUDA_VISIBLE_DEVICES=0 python src/train_bash.py --stage sft --model_name_or_path models/chatglm3-6b --do_train --dataset self_cognition --template chatglm3 --finetuning_type lora --lora_target query_key_value --output_dir output/chatglm3_sft_lora_self/ --overwrite_cache --per_device_train_batch_size 4 --gradient_accumulation_steps 4 --lr_scheduler_type cosine --logging_steps 10 --save_steps 200 --learning_rate 5e-5 --num_train_epochs 100 --plot_loss --fp16

调试

  • 用pycharm,跟踪入口,从src/train_bash.py进去,一步一步看
  • 根据报错log,找到"Loading dataset {}..."
  • 然后加断点,单步调试

调试后定位到:Segmentation fault (core dumped)是在 运行 datasets的 load_dataset() 函数发生的,单独调用这个函数也复现问题了: https://github.com/hiyouga/LLaMA-Factory/blob/main/src/llmtuner/data/loader.py#L56

试了好几个和datasets的Segmentation fault (core dumped)报错相关的修复方案,都也没有解决,包括网上搜到要更新一些相关库的版本,也都不行。

最终从报错的ubuntu18.04切换到20.04,换了个操作系统,就没有这个报错了

相关推荐
九尾狐ai6 分钟前
从九尾狐AI企业培训案例拆解:传统企业的AI获客系统架构设计与实战效果分析
人工智能
Blossom.11836 分钟前
AI Agent智能办公助手:从ChatGPT到真正“干活“的系统
人工智能·分布式·python·深度学习·神经网络·chatgpt·迁移学习
应用市场37 分钟前
Adam优化器深度解析:从数学原理到PyTorch源码实
人工智能·pytorch·python
a努力。39 分钟前
2026 AI 编程终极套装:Claude Code + Codex + Gemini CLI + Antigravity,四位一体实战指南!
java·开发语言·人工智能·分布式·python·面试
qwerasda12385240 分钟前
基于cornernet_hourglass104的纸杯检测与识别模型训练与优化详解
人工智能·计算机视觉·目标跟踪
抠头专注python环境配置1 小时前
解决“No module named ‘tensorflow‘”报错:从导入失败到环境配置成功
人工智能·windows·python·tensorflow·neo4j
好奇龙猫1 小时前
【AI学习-comfyUI学习-三十六节-黑森林-融合+扩图工作流-各个部分学习】
人工智能·学习
卡尔AI工坊2 小时前
Andrej Karpathy:过去一年大模型的六个关键转折
人工智能·经验分享·深度学习·机器学习·ai编程
:mnong2 小时前
通过手写识别数字可视化学习卷积神经网络原理
人工智能·学习·cnn
俊哥V2 小时前
[本周看点]AI算力扩张的“隐形瓶颈”——电网接入为何成为最大制约?
人工智能·ai