关于小波降噪、小波增强、小波去雾的原理区分

在传统的图像处理中使用小波分解是一种常见的方法。经常分不清小波降噪和小波增强的区别,简单记录下二者的区别同时再记录一下小波去雾的原理。

一、小波降噪原理

  1. 信号分解

    • 小波降噪基于小波变换。它将含噪信号分解成不同尺度(频率)下的小波系数。例如,对于一个音频信号,通过小波变换可以将其分解为低频的近似分量和高频的细节分量。

    • 这种分解是利用小波函数的伸缩和平移特性,将信号在不同的频率段进行分析。

  2. 阈值处理

    • 对于分解得到的小波系数,由于噪声通常在高频部分表现为较小的系数,而有用信号的系数相对较大。所以可以设置一个阈值。

    • 当小波系数的绝对值小于这个阈值时,认为这个系数主要是由噪声引起的,将其置为零或者进行收缩处理;当小波系数的绝对值大于阈值时,则保留或者进行适当调整,认为其包含有用信号成分。

  3. 信号重构

    • 经过阈值处理后的小波系数,再通过小波逆变换重构出降噪后的信号。

3.信号重构

经过阈值处理后的小波系数,再通过小波逆变换重构出降噪后的信号。

二、 小波增强原理

  1. 小波变换分析

    • 小波增强同样先对信号进行小波变换,得到信号在不同尺度下的小波系数。但是,这里的重点不是去除噪声系数,而是分析信号的特征。例如,在图像增强中,通过小波变换可以清晰地看到图像的边缘、纹理等特征在不同尺度下的小波系数分布情况。
  2. 系数调整

    • 根据信号增强的目标,对小波系数进行调整。如果是增强图像的边缘,可能会对对应边缘特征的小波系数进行放大操作。而对于一些不重要的系数(可能是平滑区域的系数),可能会进行适当的抑制。
  3. 信号重构

    • 调整后的小波系数通过小波逆变换得到增强后的信号。

总的来说,小波降噪主要是去除噪声,重点在于区分噪声系数和有用信号系数并去除噪声系数;而小波增强主要是根据信号特征对系数进行调整以增强某些特征,二者目的和处理系数的方式存在差异。

三、小波去雾原理

  1. 雾的形成模型

    • 在图像去雾中,雾的形成通常可以用大气散射模型来描述。这个模型为\(I(x)=J(x)t(x)+A(1 - t(x))\),其中\(I(x)\)是观测到的有雾图像,\(J(x)\)是无雾的场景辐射率(也就是我们想要恢复的图像),\(A\)是大气光值,\(t(x)\)是透射率。
  2. 基于小波的处理

    • 小波变换被用于估计透射率\(t(x)\)等参数。首先对有雾图像进行小波变换,在不同的小波子带上分析图像的特征。

    • 例如,通过在小波域中利用图像的局部对比度等信息来估计透射率,然后根据大气散射模型反推得到无雾图像\(J(x)=\frac{I(x)-A}{t(x)}+A\)。

    • 与降噪不同的是,去雾主要是针对图像的退化模型(由雾引起的图像质量下降)进行处理,而降噪是针对信号中的噪声干扰进行处理

相关推荐
子燕若水3 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室4 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿5 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫5 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
伍哥的传说5 小时前
React 各颜色转换方法、颜色值换算工具HEX、RGB/RGBA、HSL/HSLA、HSV、CMYK
深度学习·神经网络·react.js
大千AI助手5 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记5 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元5 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术6 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端