多传感器融合SLAM在自动驾驶方向的初步探索的记录

1. VIO的不可观问题

现有的VIO都是解决的六自由度的问题, 但是对于行驶在路面上的车来说, 通常情况下不会有roll与z方向的自由度, 而且车体模型限制了不可能有纯yaw的变换. 同时由于IMU在Z轴上与roll, pitch上激励不足, 会导致IMU在初始化过程中尺度不准以及重力方向估计错误, 这是很要命的. 所以我想通过融合车体上的其他传感器来解决这方面的问题.

2. 尝试1, 轮速计的加入

轮速计用来解决IMU+单目初始化尺度不确定的问题. 用阿克曼模型计算出车的速度向量和角速度向量, 也做一个预积分, 把轮速计预积分的结果放进ldlt中计算求出尺度. 在实验中, 如果不融入轮速计, 同样地图每次结果尺度都有差别, 即使标定了很多次IMU噪声和零偏都不行. 这里有个问题是, IMU的噪声会不会因为车发动机震动而变化, 有懂的老哥可以交流一下.

轮速计融入初始化可以解决尺度问题, 剩下的就是融进优化问题了, 这部分有很多论文都做过.

3. 平面约束的加入

在长时间的行驶中, 发现融入轮速计后还是会出现在Z轴上的变化, 初步分析应该是IMU导致的, 加入平面约束是想把Z轴上的跳动抹掉. 这块工作还在进行中, 现有的方法是把车体坐标与世界坐标的Z轴上的平移量加入优化, 优化目标是趋近于0. 但实测效果不好.

待补充...

以下是现有的室内测试结果, heading和尺度方面的问题似乎是解决了

对比没有加入平面约束和轮速计的结果

有平面与轮速计约束:

没有轮速与平面约束

灰色的是用纯轮速计推出来的, 绿的为vio或者viw推的, 可以看到差距还是挺大的

相关推荐
檐下翻书17315 分钟前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao28 分钟前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
NewCarRen1 小时前
自动驾驶安全评估框架:基于物理的功能能力测试
网络安全·自动驾驶·汽车
搬砖者(视觉算法工程师)1 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
CV实验室1 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大
aitoolhub2 小时前
培训ppt高效制作:稿定设计 + Prompt 工程 30 分钟出图指南
人工智能·prompt·aigc
oranglay2 小时前
提示词(Prompt Engineering)核心思维
人工智能·prompt
极速learner2 小时前
【Prompt分享】自学英语教程的AI 提示语:流程、范例及可视化实现
人工智能·prompt·ai写作
大怪v2 小时前
我TM被AI骗的自己PUA了自己😂 😂 !细思极恐~
人工智能·chatgpt·grok
studytosky2 小时前
深度学习理论与实战:Pytorch基础入门
人工智能·pytorch·python·深度学习·机器学习