多传感器融合SLAM在自动驾驶方向的初步探索的记录

1. VIO的不可观问题

现有的VIO都是解决的六自由度的问题, 但是对于行驶在路面上的车来说, 通常情况下不会有roll与z方向的自由度, 而且车体模型限制了不可能有纯yaw的变换. 同时由于IMU在Z轴上与roll, pitch上激励不足, 会导致IMU在初始化过程中尺度不准以及重力方向估计错误, 这是很要命的. 所以我想通过融合车体上的其他传感器来解决这方面的问题.

2. 尝试1, 轮速计的加入

轮速计用来解决IMU+单目初始化尺度不确定的问题. 用阿克曼模型计算出车的速度向量和角速度向量, 也做一个预积分, 把轮速计预积分的结果放进ldlt中计算求出尺度. 在实验中, 如果不融入轮速计, 同样地图每次结果尺度都有差别, 即使标定了很多次IMU噪声和零偏都不行. 这里有个问题是, IMU的噪声会不会因为车发动机震动而变化, 有懂的老哥可以交流一下.

轮速计融入初始化可以解决尺度问题, 剩下的就是融进优化问题了, 这部分有很多论文都做过.

3. 平面约束的加入

在长时间的行驶中, 发现融入轮速计后还是会出现在Z轴上的变化, 初步分析应该是IMU导致的, 加入平面约束是想把Z轴上的跳动抹掉. 这块工作还在进行中, 现有的方法是把车体坐标与世界坐标的Z轴上的平移量加入优化, 优化目标是趋近于0. 但实测效果不好.

待补充...

以下是现有的室内测试结果, heading和尺度方面的问题似乎是解决了

对比没有加入平面约束和轮速计的结果

有平面与轮速计约束:

没有轮速与平面约束

灰色的是用纯轮速计推出来的, 绿的为vio或者viw推的, 可以看到差距还是挺大的

相关推荐
加油吧zkf4 分钟前
水下目标检测:突破与创新
人工智能·计算机视觉·目标跟踪
加油吧zkf4 分钟前
AI大模型如何重塑软件开发流程?——结合目标检测的深度实践与代码示例
开发语言·图像处理·人工智能·python·yolo
峙峙峙17 分钟前
线性代数--AI数学基础复习
人工智能·线性代数
weiwuxian22 分钟前
揭开智能体的神秘面纱:原来你不是"超级AI"!
人工智能
Codebee23 分钟前
“自举开发“范式:OneCode如何用低代码重构自身工具链
java·人工智能·架构
说私域35 分钟前
基于开源AI智能名片链动2+1模式的S2B2C商城小程序:门店私域流量与视频号直播融合的生态创新研究
人工智能·小程序·开源
Ronin-Lotus37 分钟前
深度学习篇---Yolov系列
人工智能·深度学习
静心问道1 小时前
GoT:超越思维链:语言模型中的有效思维图推理
人工智能·计算机视觉·语言模型
aneasystone本尊1 小时前
学习 Claude Code 的工具使用(三)
人工智能
szxinmai主板定制专家1 小时前
【精密测量】基于ARM+FPGA的多路光栅信号采集方案
服务器·arm开发·人工智能·嵌入式硬件·fpga开发