多传感器融合SLAM在自动驾驶方向的初步探索的记录

1. VIO的不可观问题

现有的VIO都是解决的六自由度的问题, 但是对于行驶在路面上的车来说, 通常情况下不会有roll与z方向的自由度, 而且车体模型限制了不可能有纯yaw的变换. 同时由于IMU在Z轴上与roll, pitch上激励不足, 会导致IMU在初始化过程中尺度不准以及重力方向估计错误, 这是很要命的. 所以我想通过融合车体上的其他传感器来解决这方面的问题.

2. 尝试1, 轮速计的加入

轮速计用来解决IMU+单目初始化尺度不确定的问题. 用阿克曼模型计算出车的速度向量和角速度向量, 也做一个预积分, 把轮速计预积分的结果放进ldlt中计算求出尺度. 在实验中, 如果不融入轮速计, 同样地图每次结果尺度都有差别, 即使标定了很多次IMU噪声和零偏都不行. 这里有个问题是, IMU的噪声会不会因为车发动机震动而变化, 有懂的老哥可以交流一下.

轮速计融入初始化可以解决尺度问题, 剩下的就是融进优化问题了, 这部分有很多论文都做过.

3. 平面约束的加入

在长时间的行驶中, 发现融入轮速计后还是会出现在Z轴上的变化, 初步分析应该是IMU导致的, 加入平面约束是想把Z轴上的跳动抹掉. 这块工作还在进行中, 现有的方法是把车体坐标与世界坐标的Z轴上的平移量加入优化, 优化目标是趋近于0. 但实测效果不好.

待补充...

以下是现有的室内测试结果, heading和尺度方面的问题似乎是解决了

对比没有加入平面约束和轮速计的结果

有平面与轮速计约束:

没有轮速与平面约束

灰色的是用纯轮速计推出来的, 绿的为vio或者viw推的, 可以看到差距还是挺大的

相关推荐
机器之心3 小时前
OpenAI推出全新ChatGPT Images,奥特曼亮出腹肌搞宣传
人工智能·openai
机器之心3 小时前
SIGGRAPH Asia 2025:摩尔线程赢图形顶会3DGS挑战赛大奖,自研LiteGS全面开源
人工智能·openai
_Stellar3 小时前
从输入到输出:大语言模型一次完整推理简单解析
人工智能·语言模型·自然语言处理
【建模先锋】3 小时前
特征提取+概率神经网络 PNN 的轴承信号故障诊断模型
人工智能·深度学习·神经网络·信号处理·故障诊断·概率神经网络·特征提取
轲轲014 小时前
Week02 深度学习基本原理
人工智能·深度学习
老蒋新思维4 小时前
创客匠人:认知即资产 ——AI 时代创始人 IP 知识变现的底层逻辑
网络·人工智能·网络协议·tcp/ip·重构·创始人ip·创客匠人
开放知识图谱4 小时前
论文浅尝 | 大语言模型在带超关系的知识图谱上的推理(ICLR2025)
人工智能·语言模型·自然语言处理·知识图谱
世岩清上4 小时前
世岩清上:“人工智能+”可以赋能哪些行业场景?
人工智能·百度
sumAll4 小时前
别再手动对齐矩形了!这个开源神器让 AI 帮你画架构图 (Next-AI-Draw-IO 体验)
前端·人工智能·next.js
Java后端的Ai之路4 小时前
【智能体搭建平台篇】-Dify部署方案介绍
人工智能·chatgpt·aigc·ai编程