文章目录
本文是根据黑马程序员的视频课程 黑马程序员Redis入门到实战教程,深度透析redis底层原理+redis分布式锁+企业解决方案+黑马点评实战项目整理而来。
模仿大众点评的项目:
基于Redis实现短信登录
代码
java
@Override
public Result login(LoginFormDTO loginForm, HttpSession session) {
//1. 校验手机号
String phone = loginForm.getPhone();
if (RegexUtils.isPhoneInvalid(phone)) {
return Result.fail("手机号格式错误");
}
//2. 从redis获取验证码并校验
String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone);
String code = loginForm.getCode();
if (cacheCode == null || !cacheCode.equals(code)){
//3. 不一致,报错
return Result.fail("验证码错误");
}
//4.一致,根据手机号查询用户
User user = query().eq("phone", phone).one();
//5. 判断用户是否存在
if (user == null){
//6. 不存在,创建新用户
user = createUserWithPhone(phone);
}
//7.保存用户信息到redis
// 7.1 随机生成token,作为登录令牌
String token = UUID.randomUUID().toString(true);
// 7.2 将User转为HashMap存储
UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class);
Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(),
CopyOptions.create()
.setIgnoreNullValue(true)
.setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString()));
// 7.3 存储
String tokenKey = LOGIN_USER_KEY + token;
stringRedisTemplate.opsForHash().putAll(tokenKey, userMap);
// 7.4 设置token有效期
stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES);
// 8. 返回token
return Result.ok(token);
}
商户查询缓存
防止缓存穿透(在缓存和数据库中都不存在的信息,多次查询,会给数据库带来压力),采用返回空值到redis的方案,下一次查询直接显示为空。还有一种方法是布隆过滤。
代码如下:
java
@Resource
private StringRedisTemplate stringRedisTemplate;
@Override
public Result queryById(Long id) {
String key = CACHE_SHOP_KEY + id;
// 1. 从redis查询商户缓存
String shopJson = stringRedisTemplate.opsForValue().get(key);
// 2. 判断redis缓存中是否存在
if (StrUtil.isNotBlank(shopJson)) {
// 3. 存在,直接返回
Shop shop = JSONUtil.toBean(shopJson, Shop.class); // Json数据转换为java对象
return Result.ok(shop);
}
// 判断命中的是否是空值
if (shopJson != null) {
// 返回错误信息
return Result.fail("店铺不存在!");
}
// 4. 不存在,根据id查询数据库
Shop shop = getById(id);
// 5. 数据库中不存在,返回错误
if (shop == null) {
// 将空值写入redis
stringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);
// 返回错误信息
return Result.fail("店铺不存在!");
}
// 6. 数据库中存在,写入redis
stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);
// 7. 返回
return Result.ok(shop);
}
店铺对应的数据存入redis中
Redis和Mysql数据库数据同步
根据id修改店铺时,先修改数据库,再删除缓存:我们确定了采用删除策略,来解决双写问题,当我们修改了数据之后,然后把缓存中的数据进行删除,查询时发现缓存中没有数据,则会从mysql中加载最新的数据,从而避免数据库和缓存不一致的问题
java
@Override
@Transactional
public Result update(Shop shop) {
Long id = shop.getId();
if (id == null) {
return Result.fail("店铺id不能为空!");
}
// 1. 更新数据库
updateById(shop);
// 2. 删除缓存
stringRedisTemplate.delete(CACHE_SHOP_KEY + shop.getId());
return Result.ok();
}
如果你在redis中都找不到,就说明你查看的不是热点数据啊,就直接返回你查看的热点不存在就行了,这个是根据业务场景来实现的,跟普通的击穿不一样的
优惠券秒杀
mysql数据库中tb_voucher优惠券的表:
实现优惠券秒杀的基本代码:
java
@Resource
private ISeckillVoucherService seckillVoucherService;
@Resource
private RedisIdWorker redisIdWorker;
@Override
@Transactional
public Result seckillVoucher(Long voucherId) {
// 1. 查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2. 判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3. 判断秒杀是否结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
return Result.fail("秒杀已经开始!");
}
// 4. 判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
// 5. 扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1")
.eq("voucher_id", voucherId).update();
if (!success) {
// 库存不足
return Result.fail("库存不足!");
}
// 6. 创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 6.1 订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 6.2 用户id
Long userId = UserHolder.getUser().getId();
voucherOrder.setUserId(userId);
// 6.3 代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 7. 返回订单id
return Result.ok(orderId);
}
以上代码存在一人可以领取多个优惠券的情形,下面实现一人一单的功能。
一人一单
java
@Transactional
public Result createVoucherOrder(Long voucherId) {
// 5. 一人一单
Long userId = UserHolder.getUser().getId();
// 5.1 查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherId).count();
// 5.2 判断是否存在
if (count > 0) {
// 用户已经购买过
return Result.fail("用户已经购买过一次!");
}
// 6. 扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherId).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 库存不足
return Result.fail("库存不足!");
}
// 7. 创建订单
VoucherOrder voucherOrder = new VoucherOrder();
// 7.1 订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 7.2 用户id
voucherOrder.setUserId(userId);
// 7.3 代金券id
voucherOrder.setVoucherId(voucherId);
save(voucherOrder);
// 8. 返回订单id
return Result.ok(orderId);
}
同时加锁,保证事务的特性,同时也控制了锁的粒度。这样可以解决单机情况下的一人一单安全问题,但是在集群模式下失效。
java
Long userId = UserHolder.getUser().getId();
synchronized (userId.toString().intern()) {
// 获取代理对象(事务)
IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
return proxy.createVoucherOrder(voucherId);
}
有关锁失效原因分析
由于现在我们部署了多个tomcat,每个tomcat都有一个属于自己的jvm,那么假设在服务器A的tomcat内部,有两个线程,这两个线程由于使用的是同一份代码,那么他们的锁对象是同一个,是可以实现互斥的,但是如果现在是服务器B的tomcat内部,又有两个线程,但是他们的锁对象写的虽然和服务器A一样,但是锁对象却不是同一个,所以线程3和线程4可以实现互斥,但是却无法和线程1和线程2实现互斥,这就是 集群环境下,syn锁失效的原因,在这种情况下,我们就需要使用分布式锁来解决这个问题。
分布式锁
分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。
分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路
基于Redis实现分布式锁:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或者zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得到了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁
实现分布式锁时需要实现的两个基本方法:
-
获取锁:
- 互斥:确保只能有一个线程获取锁
- 非阻塞:尝试一次,成功返回true,失败返回false
-
释放锁:
- 手动释放
- 超时释放:获取锁时添加一个超时时间
SimpleRedisLock
利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间具有原子性
java
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS); //SETNX 实现互斥效果
return Boolean.TRUE.equals(success);
}
java
public void unlock() {
//通过del删除锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
修改业务代码
java
@Override
public Result seckillVoucher(Long voucherId) {
// 1.查询优惠券
SeckillVoucher voucher = seckillVoucherService.getById(voucherId);
// 2.判断秒杀是否开始
if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀尚未开始!");
}
// 3.判断秒杀是否已经结束
if (voucher.getEndTime().isBefore(LocalDateTime.now())) {
// 尚未开始
return Result.fail("秒杀已经结束!");
}
// 4.判断库存是否充足
if (voucher.getStock() < 1) {
// 库存不足
return Result.fail("库存不足!");
}
Long userId = UserHolder.getUser().getId();
//创建锁对象(新增代码)
SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);
//获取锁对象
boolean isLock = lock.tryLock(1200);
//加锁失败
if (!isLock) {
return Result.fail("不允许重复下单");
}
try {
//获取代理对象(事务)
IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();
return proxy.createVoucherOrder(voucherId);
} finally {
//释放锁
lock.unlock();
}
}
Redis分布式锁误删情况说明
持有锁的线程在锁的内部出现了阻塞,导致他的锁自动释放,这时其他线程,线程2来尝试获得锁,就拿到了这把锁,然后线程2在持有锁执行过程中,线程1反应过来,继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除,这就是误删别人锁的情况说明
解决方案:解决方案就是在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己,如果属于自己,则不进行锁的删除,假设还是上边的情况,线程1卡顿,锁自动释放,线程2进入到锁的内部执行逻辑,此时线程1反应过来,然后删除锁,但是线程1,一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。
解决Redis分布式锁误删问题
需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标示(用UUID + 线程id表示)
在释放锁时先获取锁中的线程标示,判断是否与当前线程标示一致
- 如果一致则释放锁
- 如果不一致则不释放锁
核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。
uuid用来区分jvm的,jvm内部用线程id区分
具体代码如下:加锁
java
private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";
@Override
public boolean tryLock(long timeoutSec) {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁
Boolean success = stringRedisTemplate.opsForValue()
.setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);
return Boolean.TRUE.equals(success);
}
释放锁
java
public void unlock() {
// 获取线程标示
String threadId = ID_PREFIX + Thread.currentThread().getId();
// 获取锁中的标示
String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);
// 判断标示是否一致
if(threadId.equals(id)) {
// 释放锁
stringRedisTemplate.delete(KEY_PREFIX + name);
}
}
使用lua脚本解决分布式锁的原子性问题
释放锁的lua脚本如下:unlock.lua
lua
-- 这里的 KEYS[1] 就是锁的key,这里的ARGV[1] 就是当前线程标示
-- 获取锁中的标示,判断是否与当前线程标示一致
if (redis.call('GET', KEYS[1]) == ARGV[1]) then
-- 一致,则删除锁
return redis.call('DEL', KEYS[1])
end
-- 不一致,则直接返回
return 0
我们的RedisTemplate中,可以利用execute方法去执行lua脚本
java
private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;
static {
UNLOCK_SCRIPT = new DefaultRedisScript<>();
UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));
UNLOCK_SCRIPT.setResultType(Long.class);
}
@Override
public void unlock() {
// 调用lua脚本
stringRedisTemplate.execute(
UNLOCK_SCRIPT,
Collections.singletonList(KEY_PREFIX + name),
ID_PREFIX + Thread.currentThread().getId());
}
基于阻塞队列实现秒杀优化
秒杀优化-异步秒杀思路
我们来回顾一下下单流程
当用户发起请求,此时会请求nginx,nginx会访问到tomcat,而tomcat中的程序,会进行串行操作,分成如下几个步骤
1、查询优惠卷
2、判断秒杀库存是否足够
3、查询订单
4、校验是否是一人一单
5、扣减库存
6、创建订单
在这六步操作中,又有很多操作是要去操作数据库的,而且还是一个线程串行执行, 这样就会导致我们的程序执行的很慢,所以我们需要异步程序执行,那么如何加速呢?
需求:
-
新增秒杀优惠券的同时,将优惠券信息保存到Redis中
-
基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
-
如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
-
开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
秒杀优化-基于阻塞队列实现秒杀优化
seckill.lua文件,实现上图中的逻辑
lua
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
return 0
VoucherOrderServiceImpl
修改下单动作,现在我们去下单时,是通过lua表达式去原子执行判断逻辑,如果判断我出来不为0 ,则要么是库存不足,要么是重复下单,返回错误信息,如果是0,则把下单的逻辑保存到队列中去,然后异步执行
java
//异步处理线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
//在类初始化之后执行,因为当这个类初始化好了之后,随时都是有可能要执行的
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
// 用于线程池处理的任务
// 当初始化完毕后,就会去从队列中去拿信息
private class VoucherOrderHandler implements Runnable{
@Override
public void run() {
while (true){
try {
// 1.获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
// 2.创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("处理订单异常", e);
}
}
}
private void handleVoucherOrder(VoucherOrder voucherOrder) {
//1.获取用户
Long userId = voucherOrder.getUserId();
// 2.创建锁对象
RLock redisLock = redissonClient.getLock("lock:order:" + userId);
// 3.尝试获取锁
boolean isLock = redisLock.lock();
// 4.判断是否获得锁成功
if (!isLock) {
// 获取锁失败,直接返回失败或者重试
log.error("不允许重复下单!");
return;
}
try {
//注意:由于是spring的事务是放在threadLocal中,此时的是多线程,事务会失效
proxy.createVoucherOrder(voucherOrder);
} finally {
// 释放锁
redisLock.unlock();
}
}
private BlockingQueue<VoucherOrder> orderTasks =new ArrayBlockingQueue<>(1024 * 1024);
@Override
public Result seckillVoucher(Long voucherId) {
Long userId = UserHolder.getUser().getId();
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
VoucherOrder voucherOrder = new VoucherOrder();
// 2.3.订单id
long orderId = redisIdWorker.nextId("order");
voucherOrder.setId(orderId);
// 2.4.用户id
voucherOrder.setUserId(userId);
// 2.5.代金券id
voucherOrder.setVoucherId(voucherId);
// 2.6.放入阻塞队列
orderTasks.add(voucherOrder);
//3.获取代理对象
proxy = (IVoucherOrderService)AopContext.currentProxy();
//4.返回订单id
return Result.ok(orderId);
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
Long userId = voucherOrder.getUserId();
// 5.1.查询订单
int count = query().eq("user_id", userId).eq("voucher_id", voucherOrder.getVoucherId()).count();
// 5.2.判断是否存在
if (count > 0) {
// 用户已经购买过了
log.error("用户已经购买过了");
return ;
}
// 6.扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1") // set stock = stock - 1
.eq("voucher_id", voucherOrder.getVoucherId()).gt("stock", 0) // where id = ? and stock > 0
.update();
if (!success) {
// 扣减失败
log.error("库存不足");
return ;
}
save(voucherOrder);
}
秒杀业务的优化思路是什么?
- 先利用Redis完成库存余量、一人一单判断,完成抢单业务
- 再将下单业务放入阻塞队列,利用独立线程异步下单
- 基于阻塞队列的异步秒杀存在哪些问题?
- 内存限制问题
- 数据安全问题
Redis消息队列优化秒杀业务
什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:
- 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
- 生产者:发送消息到消息队列
- 消费者:从消息队列获取消息并处理消息
基于Redis的Stream结构作为消息队列,实现异步秒杀下单
需求:
- 创建一个Stream类型的消息队列,名为stream.orders
- 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
- 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单
java
127.0.0.1:6379> XGROUP CREATE stream.orders g1 0 MKSTREAM
OK
seckill.lua脚本中添加发送到消息队列的内容
lua
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
-- 3.6.发送消息到队列中, XADD stream.orders * k1 v1 k2 v2 ...
redis.call('xadd', 'stream.orders', '*', 'userId', userId, 'voucherId', voucherId, 'id', orderId)
return 0
VoucherOrderServiceImpl
java
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有消息,继续下一次循环
continue;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
//处理异常消息
handlePendingList();
}
}
}
private void handlePendingList() {
while (true) {
try {
// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1),
StreamOffset.create("stream.orders", ReadOffset.from("0"))
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有异常消息,结束循环
break;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理pendding订单异常", e);
try{
Thread.sleep(20);
}catch(Exception e){
e.printStackTrace();
}
}
}
}
}
达人探店
发布探店笔记
探店笔记类似点评网站的评价,往往是图文结合。对应的表有两个:
tb_blog:探店笔记表,包含笔记中的标题、文字、图片等
tb_blog_comments:其他用户对探店笔记的评价
上传接口
java
@Slf4j
@RestController
@RequestMapping("upload")
public class UploadController {
@PostMapping("blog")
public Result uploadImage(@RequestParam("file") MultipartFile image) {
try {
// 获取原始文件名称
String originalFilename = image.getOriginalFilename();
// 生成新文件名
String fileName = createNewFileName(originalFilename);
// 保存文件
image.transferTo(new File(SystemConstants.IMAGE_UPLOAD_DIR, fileName));
// 返回结果
log.debug("文件上传成功,{}", fileName);
return Result.ok(fileName);
} catch (IOException e) {
throw new RuntimeException("文件上传失败", e);
}
}
}
点赞功能
需求:
- 同一个用户只能点赞一次,再次点击则取消点赞
- 如果当前用户已经点赞,则点赞按钮高亮显示(前端已实现,判断字段Blog类的isLike属性)
实现步骤:
- 给Blog类中添加一个isLike字段,标示是否被当前用户点赞
- 修改点赞功能,利用Redis的set集合判断是否点赞过,未点赞过则点赞数+1,已点赞过则点赞数-1
- 修改根据id查询Blog的业务,判断当前登录用户是否点赞过,赋值给isLike字段
- 修改分页查询Blog业务,判断当前登录用户是否点赞过,赋值给isLike字段
在探店笔记的详情页面,应该把给该笔记点赞的人显示出来,比如最早点赞的TOP5,形成点赞排行榜:
之前的点赞是放到set集合,但是set集合是不能排序的,所以这个时候,咱们可以采用一个可以排序的set集合,就是咱们的sortedSet
具体步骤:
1、在Blog 添加一个字段
java
@TableField(exist = false)
private Boolean isLike;
2、修改代码
java
@Override
public Result likeBlog(Long id) {
// 1.获取登录用户
Long userId = UserHolder.getUser().getId();
// 2.判断当前登录用户是否已经点赞
String key = BLOG_LIKED_KEY + id;
Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
if (score == null) {
// 3.如果未点赞,可以点赞
// 3.1.数据库点赞数 + 1
boolean isSuccess = update().setSql("liked = liked + 1").eq("id", id).update();
// 3.2.保存用户到Redis的set集合 zadd key value score
if (isSuccess) {
stringRedisTemplate.opsForZSet().add(key, userId.toString(), System.currentTimeMillis());
}
} else {
// 4.如果已点赞,取消点赞
// 4.1.数据库点赞数 -1
boolean isSuccess = update().setSql("liked = liked - 1").eq("id", id).update();
// 4.2.把用户从Redis的set集合移除
if (isSuccess) {
stringRedisTemplate.opsForZSet().remove(key, userId.toString());
}
}
return Result.ok();
}
private void isBlogLiked(Blog blog) {
// 1.获取登录用户
UserDTO user = UserHolder.getUser();
if (user == null) {
// 用户未登录,无需查询是否点赞
return;
}
Long userId = user.getId();
// 2.判断当前登录用户是否已经点赞
String key = "blog:liked:" + blog.getId();
Double score = stringRedisTemplate.opsForZSet().score(key, userId.toString());
blog.setIsLike(score != null);
}
BlogService
java
@Override
public Result queryBlogLikes(Long id) {
String key = BLOG_LIKED_KEY + id;
// 1.查询top5的点赞用户 zrange key 0 4
Set<String> top5 = stringRedisTemplate.opsForZSet().range(key, 0, 4);
if (top5 == null || top5.isEmpty()) {
return Result.ok(Collections.emptyList());
}
// 2.解析出其中的用户id
List<Long> ids = top5.stream().map(Long::valueOf).collect(Collectors.toList());
String idStr = StrUtil.join(",", ids);
// 3.根据用户id查询用户 WHERE id IN ( 5 , 1 ) ORDER BY FIELD(id, 5, 1)
List<UserDTO> userDTOS = userService.query()
.in("id", ids).last("ORDER BY FIELD(id," + idStr + ")").list()
.stream()
.map(user -> BeanUtil.copyProperties(user, UserDTO.class))
.collect(Collectors.toList());
// 4.返回
return Result.ok(userDTOS);
}
点赞排行榜显示
参考
[1] https://www.bilibili.com/video/BV1cr4y1671t?p=1\&vd_source=c3b6e654ba39ea63bbf8fe47e7e98899