spark log4j日志配置

1.spark启动参数

先把log4j配置文件放到hdfs:hdfs://R2/projects/log4j-debug.properties

复制代码
--conf spark.yarn.dist.files=hdfs://R2/projects/log4j-debug.properties#log4j-first.properties \
--conf "spark.driver.extraJavaOptions=-Dlog4j.configuration=file:log4j-first.properties" \
--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof -Dlog4j.configuration=file:log4j-first.properties" \

2.log4j.properties(INFO日志)

复制代码
# Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=INFO

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=ERROR
log4j.logger.org.apache=WARN
log4j.logger.parquet=ERROR
log4j.logger.org.apache.spark.deploy.yarn=INFO

log4j.logger.org.apache.hudi=INFO

log4j.logger.org.apache.hadoop.hive.metastore.HiveMetaStoreClient=INFO
log4j.logger.org.apache.hadoop.hive.metastore.RetryingMetaStoreClient=INFO
log4j.logger.hive.metastore=INFO

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

3.log4j-debug.properties(DEBUG日志)

复制代码
# Set everything to be logged to the console
log4j.rootCategory=DEBUG, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=INFO

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=ERROR
log4j.logger.org.apache=WARN
log4j.logger.parquet=ERROR
log4j.logger.org.apache.spark.deploy.yarn=INFO

log4j.logger.org.apache.hudi=INFO

log4j.logger.org.apache.hadoop.hive.metastore.HiveMetaStoreClient=INFO
log4j.logger.org.apache.hadoop.hive.metastore.RetryingMetaStoreClient=INFO
log4j.logger.hive.metastore=INFO

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
相关推荐
萤火虫儿飞飞2 小时前
关爱敏宝健康成长,Witsbb健敏思“防敏行动,无敏100+”学术交流会在人民日报社举行
大数据·人工智能
isNotNullX3 小时前
什么是数据清洗?数据清洗有哪些步骤?
大数据·数据库·数据仓库·数据治理·元数据
打码人的日常分享5 小时前
智慧园区建设资料合集(Wordppt原件)
大数据·物联网·流程图·智慧城市·制造
洗发水很好用5 小时前
制造部门的转型目标与场景痛点
大数据·数据库·制造
API_technology8 小时前
亚马逊 API 实战:商品详情页实时数据采集接口开发与调用
大数据·开发语言·python·数据挖掘
大熊猫侯佩10 小时前
漫谈初学者处理 CoreData 数据之启示录
数据库·debug·swift
lilye6614 小时前
精益数据分析(101/126):SaaS商业模式优化与用户生命周期价值提升策略
大数据·数据挖掘·数据分析
isfox1 天前
Hadoop 版本进化论:从 1.0 到 2.0,架构革命全解析
大数据·后端
星环科技TDH社区版1 天前
星环科技产品可存储的表格式功能介绍以及创建示例
大数据·数据库
百度Geek说1 天前
百度垂搜数据管理系统弹性调度优化实践
大数据·搜索引擎