spark log4j日志配置

1.spark启动参数

先把log4j配置文件放到hdfs:hdfs://R2/projects/log4j-debug.properties

复制代码
--conf spark.yarn.dist.files=hdfs://R2/projects/log4j-debug.properties#log4j-first.properties \
--conf "spark.driver.extraJavaOptions=-Dlog4j.configuration=file:log4j-first.properties" \
--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof -Dlog4j.configuration=file:log4j-first.properties" \

2.log4j.properties(INFO日志)

复制代码
# Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=INFO

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=ERROR
log4j.logger.org.apache=WARN
log4j.logger.parquet=ERROR
log4j.logger.org.apache.spark.deploy.yarn=INFO

log4j.logger.org.apache.hudi=INFO

log4j.logger.org.apache.hadoop.hive.metastore.HiveMetaStoreClient=INFO
log4j.logger.org.apache.hadoop.hive.metastore.RetryingMetaStoreClient=INFO
log4j.logger.hive.metastore=INFO

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

3.log4j-debug.properties(DEBUG日志)

复制代码
# Set everything to be logged to the console
log4j.rootCategory=DEBUG, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=INFO

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=ERROR
log4j.logger.org.apache=WARN
log4j.logger.parquet=ERROR
log4j.logger.org.apache.spark.deploy.yarn=INFO

log4j.logger.org.apache.hudi=INFO

log4j.logger.org.apache.hadoop.hive.metastore.HiveMetaStoreClient=INFO
log4j.logger.org.apache.hadoop.hive.metastore.RetryingMetaStoreClient=INFO
log4j.logger.hive.metastore=INFO

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
相关推荐
Agatha方艺璇4 小时前
CentOS7 Hive2.3.8 安装图文教程
大数据·数据库
云手机掌柜4 小时前
下一代社媒运营工具:亚矩阵云手机集成AIGC与数字人技术引领内容革命
大数据·线性代数·智能手机·矩阵·aigc
上海锝秉工控5 小时前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
在未来等你8 小时前
Elasticsearch面试精讲 Day 13:索引生命周期管理ILM
大数据·分布式·elasticsearch·搜索引擎·面试
Elastic 中国社区官方博客10 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
Mr_Xuhhh11 小时前
项目需求分析(2)
c++·算法·leetcode·log4j
未来之窗软件服务12 小时前
浏览器开发CEFSharp+X86 (十六)网页读取电子秤数据——仙盟创梦IDE
大数据·智能硬件·浏览器开发·仙盟创梦ide·东方仙盟·东方仙盟网页调用sdk
阿豪314 小时前
2025 年职场转行突围:除实习外,这些硬核证书让你的简历脱颖而出(纯经验分享)
大数据·人工智能·经验分享·科技·信息可视化·产品经理
张驰课堂14 小时前
老树发新芽:六西格玛培训为石油机械制造注入持久活力
大数据·人工智能·制造
卡卡_R-Python14 小时前
大数据探索性分析——抽样技术应用
大数据·r