spark log4j日志配置

1.spark启动参数

先把log4j配置文件放到hdfs:hdfs://R2/projects/log4j-debug.properties

复制代码
--conf spark.yarn.dist.files=hdfs://R2/projects/log4j-debug.properties#log4j-first.properties \
--conf "spark.driver.extraJavaOptions=-Dlog4j.configuration=file:log4j-first.properties" \
--conf "spark.executor.extraJavaOptions=-XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+HeapDumpOnOutOfMemoryError -XX:HeapDumpPath=/tmp/heapdump.hprof -Dlog4j.configuration=file:log4j-first.properties" \

2.log4j.properties(INFO日志)

复制代码
# Set everything to be logged to the console
log4j.rootCategory=INFO, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=INFO

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=ERROR
log4j.logger.org.apache=WARN
log4j.logger.parquet=ERROR
log4j.logger.org.apache.spark.deploy.yarn=INFO

log4j.logger.org.apache.hudi=INFO

log4j.logger.org.apache.hadoop.hive.metastore.HiveMetaStoreClient=INFO
log4j.logger.org.apache.hadoop.hive.metastore.RetryingMetaStoreClient=INFO
log4j.logger.hive.metastore=INFO

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR

3.log4j-debug.properties(DEBUG日志)

复制代码
# Set everything to be logged to the console
log4j.rootCategory=DEBUG, console
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n

# Set the default spark-shell log level to WARN. When running the spark-shell, the
# log level for this class is used to overwrite the root logger's log level, so that
# the user can have different defaults for the shell and regular Spark apps.
log4j.logger.org.apache.spark.repl.Main=INFO

# Settings to quiet third party logs that are too verbose
log4j.logger.org.spark_project.jetty=ERROR
log4j.logger.org.spark_project.jetty.util.component.AbstractLifeCycle=ERROR
log4j.logger.org.apache.spark.repl.SparkIMain$exprTyper=WARN
log4j.logger.org.apache.spark.repl.SparkILoop$SparkILoopInterpreter=WARN
log4j.logger.org.apache.parquet=ERROR
log4j.logger.org.apache=WARN
log4j.logger.parquet=ERROR
log4j.logger.org.apache.spark.deploy.yarn=INFO

log4j.logger.org.apache.hudi=INFO

log4j.logger.org.apache.hadoop.hive.metastore.HiveMetaStoreClient=INFO
log4j.logger.org.apache.hadoop.hive.metastore.RetryingMetaStoreClient=INFO
log4j.logger.hive.metastore=INFO

# SPARK-9183: Settings to avoid annoying messages when looking up nonexistent UDFs in SparkSQL with Hive support
log4j.logger.org.apache.hadoop.hive.metastore.RetryingHMSHandler=FATAL
log4j.logger.org.apache.hadoop.hive.ql.exec.FunctionRegistry=ERROR
相关推荐
Hy行者勇哥1 分钟前
公司全场景运营中 PPT 的类型、功能与作用详解
大数据·人工智能
liliangcsdn36 分钟前
如何基于ElasticsearchRetriever构建RAG系统
大数据·elasticsearch·langchain
乐迪信息1 小时前
乐迪信息:基于AI算法的煤矿作业人员安全规范智能监测与预警系统
大数据·人工智能·算法·安全·视觉检测·推荐算法
极验1 小时前
iPhone17实体卡槽消失?eSIM 普及下的安全挑战与应对
大数据·运维·安全
B站_计算机毕业设计之家1 小时前
推荐系统实战:python新能源汽车智能推荐(两种协同过滤+Django 全栈项目 源码)计算机专业✅
大数据·python·django·汽车·推荐系统·新能源·新能源汽车
The Sheep 20232 小时前
WPF自定义路由事件
大数据·hadoop·wpf
SelectDB技术团队2 小时前
Apache Doris 内部数据裁剪与过滤机制的实现原理 | Deep Dive
大数据·数据库·apache·数据库系统·数据裁剪
WLJT1231231233 小时前
科技赋能塞上农业:宁夏从黄土地到绿硅谷的蝶变
大数据·人工智能·科技
B站_计算机毕业设计之家6 小时前
大数据实战:Python+Flask 汽车数据分析可视化系统(爬虫+线性回归预测+推荐 源码+文档)✅
大数据·python·数据分析·flask·汽车·线性回归·预测