4.8 构建onnx结构模型-Less

前言

构建onnx方式通常有两种:

1、通过代码转换成onnx结构,比如pytorch ---> onnx

2、通过onnx 自定义结点,图,生成onnx结构

本文主要是简单学习和使用两种不同onnx结构,

下面以 Less 结点进行分析

方式

方法一:pytorch --> onnx

暂缓,主要研究方式二

方法二: onnx

cpp 复制代码
import onnx 
from onnx import TensorProto, helper, numpy_helper
import numpy as np

def run():
    print("run start....\n")

    less = helper.make_node(
        "Less",
        name="Less_0",
        inputs=["input1", "input2"],
        outputs=["output1"],
    )
    input1_data = np.load("./tensor.npy") # 16, 397
    # input1_data = np.load("./data.npy")  # 16, 398 test
    # print(f"input1_data shape:{input1_data.shape}\n")
    # input1_data = np.zeros((16,398))
    initializer = [ 
        helper.make_tensor("input1", TensorProto.FLOAT, [16,397], input1_data)
    ]

    cast_nodel = helper.make_node(
            op_type="Cast",
            inputs=["output1"],
            outputs=["output2"],
            name="test_cast",
            to=TensorProto.FLOAT,
        )
    value_info = helper.make_tensor_value_info(
            "output2", TensorProto.BOOL, [16,397])

    graph = helper.make_graph(
        nodes=[less, cast_nodel],
        name="test_graph",
        inputs=[helper.make_tensor_value_info(
            "input2", TensorProto.FLOAT, [16,1]
        )],
        outputs=[helper.make_tensor_value_info(
            "output2",TensorProto.FLOAT, [16,397]
        )],
        initializer=initializer,
        value_info=[value_info],
    )

    op = onnx.OperatorSetIdProto()
    op.version = 11
    model = helper.make_model(graph, opset_imports=[op])
    model.ir_version = 8
    print("run done....\n")
    return model

if __name__ == "__main__":
    model = run()
    onnx.save(model, "./test_less_ori.onnx")

run

cpp 复制代码
import onnx
import onnxruntime
import numpy as np


# 检查onnx计算图
def check_onnx(mdoel):
    onnx.checker.check_model(model)
    # print(onnx.helper.printable_graph(model.graph))

def run(model):
    print(f'run start....\n')
    session = onnxruntime.InferenceSession(model,providers=['CPUExecutionProvider'])
    input_name1 = session.get_inputs()[0].name  
    input_data1= np.random.randn(16,1).astype(np.float32)
    print(f'input_data1 shape:{input_data1.shape}\n')

    output_name1 = session.get_outputs()[0].name

    pred_onx = session.run(
    [output_name1], {input_name1: input_data1})[0]

    print(f'pred_onx shape:{pred_onx.shape} \n')

    print(f'run end....\n')


if __name__ == '__main__':
    path = "./test_less_ori.onnx"
    model = onnx.load("./test_less_ori.onnx")
    check_onnx(model)
    run(path)
相关推荐
技术小泽2 小时前
操作系统-虚拟内存篇
java·linux·性能优化·系统架构
技术小泽2 小时前
JVM之CMS、G1|ZGC详解以及选型对比
java·jvm·后端·算法·性能优化
2501_916013741 天前
iOS 文件管理与 uni-app 性能优化实战 多工具协作的完整指南
android·ios·性能优化·小程序·uni-app·iphone·webview
拾忆,想起1 天前
Redis红锁(RedLock)解密:分布式锁的高可用终极方案
java·数据库·redis·分布式·缓存·性能优化·wpf
桦仔1 天前
SQL Server 2025中解决“写写阻塞”的利器
性能优化·锁优化·数据库阻塞
wayhome在哪2 天前
3 分钟上手!用 WebAssembly 优化前端图片处理性能(附完整代码)
javascript·性能优化·webassembly
国家不保护废物2 天前
10万条数据插入页面:从性能优化到虚拟列表的终极方案
前端·面试·性能优化
拾忆,想起2 天前
Redis发布订阅:实时消息系统的极简解决方案
java·开发语言·数据库·redis·后端·缓存·性能优化
风铃喵游2 天前
前端内存优化:String 鲜为人知的一些事
前端·性能优化