Design patterns for container-based distributed systems

Simply put

Container-based distributed systems leverage containerization technology to deploy and manage distributed applications efficiently. Design patterns for such systems can help optimize performance, scalability, and resilience.

Distributed system design patterns

These patterns are used to design complex systems that are distributed across multiple computing nodes. They include patterns like load balancing, fault tolerance, consistency, and replication.

Single-container management patterns

These patterns are used to manage a single containerized application. They include patterns like health check, self-healing,

Single-node, multi-container application patterns

Sidecar pattern

The sidecar pattern involves attaching an additional container to an existing container to provide additional functionality. For example, a logging container can be attached to an application container to handle logging tasks.

Ambassador pattern

The ambassador pattern involves using a proxy container to abstract the network communication between services. This pattern helps to decouple the services from the networking details and provides a centralized point of control.

Adapter pattern

The adapter pattern involves using an intermediate container to provide compatibility between different interfaces or protocols. It is useful when integrating multiple systems with different communication protocols.

Multi-node application patterns
Leader election pattern

The leader election pattern involves selecting a leader among a group of nodes to coordinate the actions of the distributed system. This pattern is commonly used in distributed databases, distributed file systems, or any system that requires a single point of control.

Work queue pattern

Work queue pattern: The work queue pattern involves distributing tasks among multiple nodes using a shared queue. This pattern is commonly used in distributed task processing systems, where multiple workers can process tasks in parallel.

Scatter/gather pattern

The scatter/gather pattern involves splitting a task into smaller sub-tasks, distributing them across multiple nodes, and then aggregating the results. This pattern is commonly used in data-intensive applications where processing a large amount of data can be divided and processed in parallel.


Pros and Cons

Pros of container-based distributed systems:

  1. Scalability: Containers allow for easy scaling of applications, as they can be quickly replicated and distributed across multiple hosts or clusters.
  2. Resource isolation: Containers provide resource isolation at the application level, ensuring that applications do not interfere with each other and use only the allocated resources.
  3. Portability: Containers are portable, meaning that they can be easily moved and deployed across different environments, such as on-premises, cloud, or hybrid setups.
  4. Ease of deployment: Containers simplify the deployment process, as they package everything needed to run an application, including dependencies and configurations, into a single unit.
  5. Efficient resource utilization: Containers consume fewer resources compared to traditional virtual machines, as they share the host's operating system kernel and do not require a separate guest OS.
  6. Faster development cycles: Containers enable rapid development cycles by providing a consistent and reproducible environment that can be shared among developers and easily updated.

Cons of container-based distributed systems:

  1. Increased complexity: Building and managing container-based distributed systems can be complex, especially when dealing with large-scale deployments and orchestrating container clusters.
  2. Networking challenges: Containers need to communicate with each other or with external systems, and managing the networking configurations can be challenging, particularly in a distributed environment.
  3. Learning curve: Adopting container-based distributed systems requires some learning and understanding of containerization technologies and related tools.
  4. Limited support for legacy applications: Some older or legacy applications may not be well-suited for containerization, as they may heavily rely on specific hardware or operating system dependencies.
  5. Security concerns: Containers need to be properly secured and isolated from each other to prevent unauthorized access or potential vulnerabilities.
  6. Performance overhead: While containers are generally lightweight, they add a certain amount of overhead, especially when compared to bare-metal deployments, which may impact application performance to some extent.

https://www.usenix.org/system/files/conference/hotcloud16/hotcloud16_burns.pdf
https://qrs20.techconf.org/QRSC2020_FULL/pdfs/QRS-C2020-4QOuHkY3M10ZUl1MoEzYvg/891500a629/891500a629.pdf

相关推荐
BD_Marathon19 小时前
设计模式——合成复用原则
设计模式·合成复用原则
书院门前细致的苹果1 天前
设计模式大全:单例、工厂模式、策略模式、责任链模式
设计模式·责任链模式·策略模式
BD_Marathon2 天前
设计模式——依赖倒转原则
java·开发语言·设计模式
BD_Marathon2 天前
设计模式——里氏替换原则
java·设计模式·里氏替换原则
jmxwzy2 天前
设计模式总结
设计模式
J_liaty2 天前
23种设计模式一代理模式
设计模式·代理模式
苏渡苇3 天前
优雅应对异常,从“try-catch堆砌”到“设计驱动”
java·后端·设计模式·学习方法·责任链模式
短剑重铸之日3 天前
《设计模式》第十一篇:总结
java·后端·设计模式·总结
feasibility.3 天前
AI 编程助手进阶指南:从 Claude Code 到 OpenCode 的工程化经验总结
人工智能·经验分享·设计模式·自动化·agi·skills·opencode
BD_Marathon3 天前
七大设计原则介绍
设计模式