583. Delete Operation for Two Strings 72. Edit Distance

583. Delete Operation for Two Strings

Given two strings word1 and word2, return the minimum number of steps required to make word1 and word2 the same.

In one step, you can delete exactly one character in either string.

1. dp[i][j]: the minimum number of times to deleted a letter。

the string word1 that ends in i-1

the string word2 that ends in j-1

2. recursive formula

When word1[i - 1] and word2[j - 1] are the same

When word1[i - 1] and word2[j - 1] are not the same

When word1[i - 1] is the same as word2[j - 1], dp[i][j] = dp[i - 1][j - 1];

When word1[i - 1] is not the same as word2[j - 1], there are three cases:

Case 1: delete word1[i - 1], the minimum number of operations is dp[i - 1][j] + 1

Case 2: delete word2[j - 1], the minimum number of operations is dp[i][j - 1] + 1

**Case 3:**delete word1[i - 1] and word2[j - 1] at the same time, the minimum number of operations for dp[i - 1][j - 1] + 2

then finally of course the minimum value, so when word1[i - 1] and word2[j - 1] are not the same, recursive formula: dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

Since dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2, the recursive formula can be simplified to

dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1): # m+1 不是 m
            dp[i][0] += i
        for j in range(n + 1):
            dp[0][j] += j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1#dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)
        
        return dp[-1][-1]

72. Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

recursive formula:

if (word1[i - 1] == word2[j - 1])

不操作 dp[i][j] = dp[i - 1][j - 1]

if (word1[i - 1] != word2[j - 1])

dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1 Adding an element to word2 is equivalent to removing an element from word1

删 dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1

dp[i][j] = dp[i - 1][j - 1] + 1

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1):
            dp[i][0] = i
        for j in range(n + 1):
            dp[0][j] = j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
        
        return dp[-1][-1]
相关推荐
颜酱5 小时前
图结构完全解析:从基础概念到遍历实现
javascript·后端·算法
m0_736919105 小时前
C++代码风格检查工具
开发语言·c++·算法
yugi9878385 小时前
基于MATLAB强化学习的单智能体与多智能体路径规划算法
算法·matlab
DuHz6 小时前
超宽带脉冲无线电(Ultra Wideband Impulse Radio, UWB)简介
论文阅读·算法·汽车·信息与通信·信号处理
Polaris北极星少女6 小时前
TRSV优化2
算法
代码游侠7 小时前
C语言核心概念复习——网络协议与TCP/IP
linux·运维·服务器·网络·算法
2301_763472467 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
abluckyboy8 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
园小异8 小时前
2026年技术面试完全指南:从算法到系统设计的实战突破
算法·面试·职场和发展
m0_706653238 小时前
分布式系统安全通信
开发语言·c++·算法