583. Delete Operation for Two Strings 72. Edit Distance

583. Delete Operation for Two Strings

Given two strings word1 and word2, return the minimum number of steps required to make word1 and word2 the same.

In one step, you can delete exactly one character in either string.

1. dp[i][j]: the minimum number of times to deleted a letter。

the string word1 that ends in i-1

the string word2 that ends in j-1

2. recursive formula

When word1[i - 1] and word2[j - 1] are the same

When word1[i - 1] and word2[j - 1] are not the same

When word1[i - 1] is the same as word2[j - 1], dp[i][j] = dp[i - 1][j - 1];

When word1[i - 1] is not the same as word2[j - 1], there are three cases:

Case 1: delete word1[i - 1], the minimum number of operations is dp[i - 1][j] + 1

Case 2: delete word2[j - 1], the minimum number of operations is dp[i][j - 1] + 1

**Case 3:**delete word1[i - 1] and word2[j - 1] at the same time, the minimum number of operations for dp[i - 1][j - 1] + 2

then finally of course the minimum value, so when word1[i - 1] and word2[j - 1] are not the same, recursive formula: dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

Since dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2, the recursive formula can be simplified to

dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1): # m+1 不是 m
            dp[i][0] += i
        for j in range(n + 1):
            dp[0][j] += j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1#dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)
        
        return dp[-1][-1]

72. Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

recursive formula:

if (word1[i - 1] == word2[j - 1])

不操作 dp[i][j] = dp[i - 1][j - 1]

if (word1[i - 1] != word2[j - 1])

dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1 Adding an element to word2 is equivalent to removing an element from word1

删 dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1

dp[i][j] = dp[i - 1][j - 1] + 1

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1):
            dp[i][0] = i
        for j in range(n + 1):
            dp[0][j] = j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
        
        return dp[-1][-1]
相关推荐
卷福同学28 分钟前
【AI编程】AI+高德MCP不到10分钟搞定上海三日游
人工智能·算法·程序员
mit6.82429 分钟前
[Leetcode] 预处理 | 多叉树bfs | 格雷编码 | static_cast | 矩阵对角线
算法
皮卡蛋炒饭.1 小时前
数据结构—排序
数据结构·算法·排序算法
??tobenewyorker2 小时前
力扣打卡第23天 二叉搜索树中的众数
数据结构·算法·leetcode
贝塔西塔2 小时前
一文读懂动态规划:多种经典问题和思路
算法·leetcode·动态规划
众链网络2 小时前
AI进化论08:机器学习的崛起——数据和算法的“二人转”,AI“闷声发大财”
人工智能·算法·机器学习
3 小时前
Unity开发中常用的洗牌算法
java·算法·unity·游戏引擎·游戏开发
飒飒真编程4 小时前
C++类模板继承部分知识及测试代码
开发语言·c++·算法
GeminiGlory4 小时前
算法练习6-大数乘法(高精度乘法)
算法
熬了夜的程序员5 小时前
【华为机试】HJ61 放苹果
算法·华为·面试·golang