583. Delete Operation for Two Strings 72. Edit Distance

583. Delete Operation for Two Strings

Given two strings word1 and word2, return the minimum number of steps required to make word1 and word2 the same.

In one step, you can delete exactly one character in either string.

1. dp[i][j]: the minimum number of times to deleted a letter。

the string word1 that ends in i-1

the string word2 that ends in j-1

2. recursive formula

When word1[i - 1] and word2[j - 1] are the same

When word1[i - 1] and word2[j - 1] are not the same

When word1[i - 1] is the same as word2[j - 1], dp[i][j] = dp[i - 1][j - 1];

When word1[i - 1] is not the same as word2[j - 1], there are three cases:

Case 1: delete word1[i - 1], the minimum number of operations is dp[i - 1][j] + 1

Case 2: delete word2[j - 1], the minimum number of operations is dp[i][j - 1] + 1

**Case 3:**delete word1[i - 1] and word2[j - 1] at the same time, the minimum number of operations for dp[i - 1][j - 1] + 2

then finally of course the minimum value, so when word1[i - 1] and word2[j - 1] are not the same, recursive formula: dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

Since dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2, the recursive formula can be simplified to

dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1): # m+1 不是 m
            dp[i][0] += i
        for j in range(n + 1):
            dp[0][j] += j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1#dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)
        
        return dp[-1][-1]

72. Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

recursive formula:

if (word1[i - 1] == word2[j - 1])

不操作 dp[i][j] = dp[i - 1][j - 1]

if (word1[i - 1] != word2[j - 1])

dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1 Adding an element to word2 is equivalent to removing an element from word1

删 dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1

dp[i][j] = dp[i - 1][j - 1] + 1

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1):
            dp[i][0] = i
        for j in range(n + 1):
            dp[0][j] = j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
        
        return dp[-1][-1]
相关推荐
Dingdangcat8615 分钟前
城市交通多目标检测系统:YOLO11-MAN-FasterCGLU算法优化与实战应用_3
算法·目标检测·目标跟踪
tang&1 小时前
滑动窗口:双指针的优雅舞步,征服连续区间问题的利器
数据结构·算法·哈希算法·滑动窗口
拼命鼠鼠1 小时前
【算法】矩阵链乘法的动态规划算法
算法·矩阵·动态规划
LYFlied1 小时前
【每日算法】LeetCode 17. 电话号码的字母组合
前端·算法·leetcode·面试·职场和发展
式5162 小时前
线性代数(八)非齐次方程组的解的结构
线性代数·算法·机器学习
橘颂TA3 小时前
【剑斩OFFER】算法的暴力美学——翻转对
算法·排序算法·结构与算法
叠叠乐3 小时前
robot_state_publisher 参数
java·前端·算法
hweiyu003 小时前
排序算法:冒泡排序
算法·排序算法
brave and determined3 小时前
CANN训练营 学习(day9)昇腾AscendC算子开发实战:从零到性能冠军
人工智能·算法·机器学习·ai·开发环境·算子开发·昇腾ai
Dave.B3 小时前
用【vtk3DLinearGridCrinkleExtractor】快速提取3D网格相交面
算法·3d·vtk