583. Delete Operation for Two Strings 72. Edit Distance

583. Delete Operation for Two Strings

Given two strings word1 and word2, return the minimum number of steps required to make word1 and word2 the same.

In one step, you can delete exactly one character in either string.

1. dp[i][j]: the minimum number of times to deleted a letter。

the string word1 that ends in i-1

the string word2 that ends in j-1

2. recursive formula

When word1[i - 1] and word2[j - 1] are the same

When word1[i - 1] and word2[j - 1] are not the same

When word1[i - 1] is the same as word2[j - 1], dp[i][j] = dp[i - 1][j - 1];

When word1[i - 1] is not the same as word2[j - 1], there are three cases:

Case 1: delete word1[i - 1], the minimum number of operations is dp[i - 1][j] + 1

Case 2: delete word2[j - 1], the minimum number of operations is dp[i][j - 1] + 1

**Case 3:**delete word1[i - 1] and word2[j - 1] at the same time, the minimum number of operations for dp[i - 1][j - 1] + 2

then finally of course the minimum value, so when word1[i - 1] and word2[j - 1] are not the same, recursive formula: dp[i][j] = min({dp[i - 1][j - 1] + 2, dp[i - 1][j] + 1, dp[i][j - 1] + 1});

Since dp[i][j - 1] + 1 = dp[i - 1][j - 1] + 2, the recursive formula can be simplified to

dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1;

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1): # m+1 不是 m
            dp[i][0] += i
        for j in range(n + 1):
            dp[0][j] += j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + 1#dp[i][j] = min(dp[i-1][j-1] + 2, dp[i-1][j] + 1, dp[i][j-1] + 1)
        
        return dp[-1][-1]

72. Edit Distance

Given two strings word1 and word2, return the minimum number of operations required to convert word1 to word2.

You have the following three operations permitted on a word:

  • Insert a character
  • Delete a character
  • Replace a character

recursive formula:

if (word1[i - 1] == word2[j - 1])

不操作 dp[i][j] = dp[i - 1][j - 1]

if (word1[i - 1] != word2[j - 1])

dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1 Adding an element to word2 is equivalent to removing an element from word1

删 dp[i][j] = dp[i - 1][j] + 1,dp[i][j] = dp[i][j - 1] + 1

dp[i][j] = dp[i - 1][j - 1] + 1

DP:

Time complexity: O(m x n)

Space complexity: O(m x n)

python 复制代码
class Solution:
    def minDistance(self, word1: str, word2: str) -> int:
        m = len(word1)
        n = len(word2)

        dp = [[0] * (n + 1) for _ in range(m + 1)]

        for i in range(m + 1):
            dp[i][0] = i
        for j in range(n + 1):
            dp[0][j] = j
        
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                if word1[i - 1] == word2[j - 1]:
                    dp[i][j] = dp[i - 1][j - 1]
                else:
                    dp[i][j] = min(dp[i - 1][j - 1] + 1, dp[i - 1][j] + 1, dp[i][j - 1] + 1)
        
        return dp[-1][-1]
相关推荐
董董灿是个攻城狮1 小时前
5分钟搞懂什么是窗口注意力?
算法
Dann Hiroaki1 小时前
笔记分享: 哈尔滨工业大学CS31002编译原理——02. 语法分析
笔记·算法
qqxhb3 小时前
零基础数据结构与算法——第四章:基础算法-排序(上)
java·数据结构·算法·冒泡·插入·选择
FirstFrost --sy4 小时前
数据结构之二叉树
c语言·数据结构·c++·算法·链表·深度优先·广度优先
森焱森4 小时前
垂起固定翼无人机介绍
c语言·单片机·算法·架构·无人机
搂鱼1145145 小时前
(倍增)洛谷 P1613 跑路/P4155 国旗计划
算法
Yingye Zhu(HPXXZYY)5 小时前
Codeforces 2021 C Those Who Are With Us
数据结构·c++·算法
无聊的小坏坏6 小时前
三种方法详解最长回文子串问题
c++·算法·回文串
长路 ㅤ   6 小时前
Java后端技术博客汇总文档
分布式·算法·技术分享·编程学习·java后端
秋说7 小时前
【PTA数据结构 | C语言版】两枚硬币
c语言·数据结构·算法