LLM之Agent(三):HuggingGPT根据用户需求自动调用Huggingface合适的模型

​ 浙大和微软亚洲研究院开源的HuggingGPT,又名JARVIS,它可以根据用户的自然语言描述的需求就可以自动分析需要哪些AI模型,然后去Huggingface上直接调用对应的模型,最终给出用户的解决方案。

一、HuggingGPT的工作流程

它的工作流程包括四个阶段:

  • **任务规划:**ChatGPT将用户的需求解析为任务列表,并确定任务之间的执行顺序和资源依赖关系;

  • **模型选择:**ChatGPT根据HuggingFace上托管的各专家模型的描述,为任务分配合适的模型;

  • **任务执行:**混合端点(包括本地推理和HuggingFace推理)上被选定的专家模型根据任务顺序和依赖关系执行分配的任务,并将执行信息和结果给到ChatGPT;

  • **响应生成:**最后,由ChatGPT总结各模型的执行过程日志和推理结果,给出最终的输出。

下表展示了HuggingGPT的具体细节:

不同任务的任务规划评估,如下表所示:

任务规划的格式是: [{"task": task, "id", task_id, "dep": dependency_task_ids, "args": {"text": text, "image": URL, "audio": URL, "video": URL}}],参数的详细解释,如下表所示:

二、HuggingGPT的示例

假设我们有如下请求,来看一下HuggingGPT的完整流程:

请求:请生成一个女孩正在看书的图片,她的姿势与example.jpg中的男孩相同。然后请用你的声音描述新图片。

可以看到HuggingGPT是如何将它拆解为6个子任务,并分别选定模型执行得到最终结果的。

、**** HuggingGPT不同任务的实验效果

参考文献:

1\] https://github.com/microsoft/JARVIS \[2\] https://huggingface.co/spaces/microsoft/HuggingGPT \[3\] https://arxiv.org/abs/2303.17580 \[4\] https://twitter.com/DrJimFan/status/1642563455298473986

相关推荐
Hcoco_me10 小时前
大模型面试题79:举例一个你用到过的MCP的场景
人工智能·深度学习·机器学习·chatgpt·机器人
LaughingZhu12 小时前
Product Hunt 每日热榜 | 2026-01-20
数据库·人工智能·经验分享·神经网络·搜索引擎·chatgpt
想用offer打牌12 小时前
一站式了解Spring AI Alibaba的Memory机制
java·人工智能·后端·spring·chatgpt·系统架构
SEO_juper1 天前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
realhuizhu2 天前
停止“无效刷题”!让AI做你的“错题外科医生”,精准切除知识毒瘤
chatgpt·提示词工程·ai学习助手·错题分析·高效学习法
Johnny.Cheung3 天前
开源免费的AI浏览器ChatGPT Atlas的可选平替Toutcas-“用后即焚”
人工智能·chatgpt·ai浏览器·toutcas·ai浏览助理
kingmax542120083 天前
0基础快速入门AI大模型应用与实战
人工智能·chatgpt
居7然3 天前
ChatGPT是怎么学会接龙的?
深度学习·语言模型·chatgpt·性能优化·transformer
感谢地心引力4 天前
【AI】2026 OpenAI 重磅:ChatGPT Go 套餐发布(8美元/月),广告测试同步启动
人工智能·ai·chatgpt·广告
jackywine64 天前
AI三国演义:ChatGPT、Claude、Gemini的发展史与较量
人工智能·chatgpt