LLM之Agent(三):HuggingGPT根据用户需求自动调用Huggingface合适的模型

​ 浙大和微软亚洲研究院开源的HuggingGPT,又名JARVIS,它可以根据用户的自然语言描述的需求就可以自动分析需要哪些AI模型,然后去Huggingface上直接调用对应的模型,最终给出用户的解决方案。

一、HuggingGPT的工作流程

它的工作流程包括四个阶段:

  • **任务规划:**ChatGPT将用户的需求解析为任务列表,并确定任务之间的执行顺序和资源依赖关系;

  • **模型选择:**ChatGPT根据HuggingFace上托管的各专家模型的描述,为任务分配合适的模型;

  • **任务执行:**混合端点(包括本地推理和HuggingFace推理)上被选定的专家模型根据任务顺序和依赖关系执行分配的任务,并将执行信息和结果给到ChatGPT;

  • **响应生成:**最后,由ChatGPT总结各模型的执行过程日志和推理结果,给出最终的输出。

下表展示了HuggingGPT的具体细节:

不同任务的任务规划评估,如下表所示:

任务规划的格式是: [{"task": task, "id", task_id, "dep": dependency_task_ids, "args": {"text": text, "image": URL, "audio": URL, "video": URL}}],参数的详细解释,如下表所示:

二、HuggingGPT的示例

假设我们有如下请求,来看一下HuggingGPT的完整流程:

请求:请生成一个女孩正在看书的图片,她的姿势与example.jpg中的男孩相同。然后请用你的声音描述新图片。

可以看到HuggingGPT是如何将它拆解为6个子任务,并分别选定模型执行得到最终结果的。

、**** HuggingGPT不同任务的实验效果

参考文献:

1\] https://github.com/microsoft/JARVIS \[2\] https://huggingface.co/spaces/microsoft/HuggingGPT \[3\] https://arxiv.org/abs/2303.17580 \[4\] https://twitter.com/DrJimFan/status/1642563455298473986

相关推荐
TOPGUS2 小时前
深圳SEO大会深度复盘:验证趋势,洞见未来! —— by Daniel
人工智能·搜索引擎·ai·chatgpt·seo·网络营销
Toky丶4 小时前
QLoRA Efficient Finetuning of Quantized LLMs
人工智能·chatgpt
程序员佳佳9 小时前
【硬核实测】GPT-5.2-Pro 对决 Gemini-3-Pro (Banana Pro):开发者如何低成本接入下一代 AI 模型?附 Python 源码
人工智能·python·gpt·chatgpt·ai作画·midjourney·ai编程
Blossom.1181 天前
GPTQ量化实战:从零手写大模型权重量化与反量化引擎
人工智能·python·算法·chatgpt·ai作画·自动化·transformer
程序员佳佳2 天前
GPT-4时代终结?GPT-5.2与Banana Pro实测数据公开,普通开发者如何接住这泼天富贵
开发语言·python·gpt·chatgpt·重构·api·midjourney
中國龍在廣州2 天前
生成不遗忘,「超长时序」世界模型,北大EgoLCD长短时记忆加持
人工智能·深度学习·算法·自然语言处理·chatgpt
victory04312 天前
后训练的起点 学术路线
chatgpt
中國龍在廣州2 天前
2025,具身智能正在惩罚“持有者”
人工智能·深度学习·算法·自然语言处理·chatgpt
hunteritself2 天前
Adobe 把 Photoshop 搬进了 ChatGPT,免费的
gpt·机器学习·ui·adobe·chatgpt·智能手机·photoshop
SEO_juper3 天前
AI搜索引擎品牌提及指南:用数据驱动策略,让品牌被AI主动推荐
人工智能·搜索引擎·chatgpt