做数据分析为何要学统计学(10)——如何进行时间序列分析

时间序列是由随时间变化的值构成,如产品销量、气温数据等等。通过对时间序列展开分析,能够回答如下问题:

  • (1)被研究对象的活动特征是否有周期性(也称季节性)
  • (2)被研究对象的活动特征是否有趋势性(上升或下降)

时间序列分析有多种方法,常用方法为STL(Seasonal and Trend decomposition using Loess)算法。该方法是一种把时间序列分解为趋势项(trend component)、季节项(seasonal component)和残差项(remainder/residual component/random)的过滤过程。如下图:

STL算法在1990年由密歇根大学的R. B. Cleveland教授以及AT&T Bell实验室的W. S. Cleveland等人研发。其特点是:

  • 稳健的估计趋势项和季节项,而不会被数据中的异常行为扭曲
  • 可以指定季节项的周期为采样时间间隔任意大于一的整数倍
  • 可以分解有缺失值的时间序列

以下用纽约 1946年1月到1959年12月的每月新生儿数作为时间序列分析人口增长的规律。代码如下:

python 复制代码
#读入时间序列数据
import pandas as pd
X=pd.read_csv("https://robjhyndman.com/tsdldata/data/nybirths.dat",header=None,names=["birth"])
#绘制折线图
X.plot()
python 复制代码
#进行时间序列分析
import  statsmodels.api as sm
import matplotlib.pyplot as plt
res = sm.tsa.seasonal_decompose(X,period=12)
res.plot()
plt.xlabel("Month")
plt.show()

结果如下

可以看人口出生在第38个月左右后出生有明显上升趋势,而且从每年3月-6期间,出生人口开始进入高峰期,从8月份左右开始出生人口急速下降。

相关推荐
充值修改昵称1 小时前
数据结构基础:B树磁盘IO优化的数据结构艺术
数据结构·b树·python·算法
C系语言1 小时前
python用pip生成requirements.txt
开发语言·python·pip
william_djj1 小时前
python3.8 提取xlsx表格内容填入单个文件
windows·python·xlsx
yumgpkpm3 小时前
银行智能数据平台在Cloudera CDH6\CDP 7\CMP 7平台下的具体使用配置流程
大数据·hive·hadoop·数据挖掘·flink·spark·cloudera
kszlgy6 小时前
Day 52 神经网络调参指南
python
wang_yb8 小时前
哑铃图:数据对比的优雅之选
数据分析·databook
wrj的博客8 小时前
python环境安装
python·学习·环境配置
KmjJgWeb8 小时前
工业零件检测与分类——基于YOLOv5的改进模型 Dysample 实现
yolo·分类·数据挖掘
Pyeako8 小时前
深度学习--BP神经网络&梯度下降&损失函数
人工智能·python·深度学习·bp神经网络·损失函数·梯度下降·正则化惩罚
JZC_xiaozhong9 小时前
电商ERP如何同步订单数据到MySQL?集成方案解析
数据库·mysql·数据分析·etl工程师·嵌入式实时数据库·电商erp集成·数据集成与应用集成