做数据分析为何要学统计学(10)——如何进行时间序列分析

时间序列是由随时间变化的值构成,如产品销量、气温数据等等。通过对时间序列展开分析,能够回答如下问题:

  • (1)被研究对象的活动特征是否有周期性(也称季节性)
  • (2)被研究对象的活动特征是否有趋势性(上升或下降)

时间序列分析有多种方法,常用方法为STL(Seasonal and Trend decomposition using Loess)算法。该方法是一种把时间序列分解为趋势项(trend component)、季节项(seasonal component)和残差项(remainder/residual component/random)的过滤过程。如下图:

STL算法在1990年由密歇根大学的R. B. Cleveland教授以及AT&T Bell实验室的W. S. Cleveland等人研发。其特点是:

  • 稳健的估计趋势项和季节项,而不会被数据中的异常行为扭曲
  • 可以指定季节项的周期为采样时间间隔任意大于一的整数倍
  • 可以分解有缺失值的时间序列

以下用纽约 1946年1月到1959年12月的每月新生儿数作为时间序列分析人口增长的规律。代码如下:

python 复制代码
#读入时间序列数据
import pandas as pd
X=pd.read_csv("https://robjhyndman.com/tsdldata/data/nybirths.dat",header=None,names=["birth"])
#绘制折线图
X.plot()
python 复制代码
#进行时间序列分析
import  statsmodels.api as sm
import matplotlib.pyplot as plt
res = sm.tsa.seasonal_decompose(X,period=12)
res.plot()
plt.xlabel("Month")
plt.show()

结果如下

可以看人口出生在第38个月左右后出生有明显上升趋势,而且从每年3月-6期间,出生人口开始进入高峰期,从8月份左右开始出生人口急速下降。

相关推荐
走遍西兰花.jpg17 小时前
修改jupyter 的默认路径
python·jupyter
永远都不秃头的程序员(互关)18 小时前
数组与std::vector深度解析:原理+手写实现+实战避坑
数据挖掘
errorPage18 小时前
Python空值判断避坑指南 + 图片定点缩放逻辑优化实战
python
郝学胜-神的一滴18 小时前
Python方法类型详解:类方法、静态方法与实例方法
开发语言·python·程序人生
AAD5558889918 小时前
【电力设备检测】YOLO11-LQEHead绝缘子缺陷检测与分类系统实现
人工智能·分类·数据挖掘
百***243718 小时前
Grok-4.1 API进阶实战:Python项目集成、性能优化与异常处理全攻略
python·spring·性能优化
Trust yourself24318 小时前
魔塔社区下载的大模型如何通过ollama部署到本地
python
码农胖虎-java18 小时前
【java并发编程】从源码角度彻底理解 ForkJoinPool.commonPool
java·开发语言·python
毕设源码-朱学姐18 小时前
【开题答辩全过程】以 基于Python淘宝电脑销售数据可视化系为例,包含答辩的问题和答案
python·信息可视化·电脑
三木彤18 小时前
Scikit-learn 零基础,从安装到实战机器学习模型
python