做数据分析为何要学统计学(10)——如何进行时间序列分析

时间序列是由随时间变化的值构成,如产品销量、气温数据等等。通过对时间序列展开分析,能够回答如下问题:

  • (1)被研究对象的活动特征是否有周期性(也称季节性)
  • (2)被研究对象的活动特征是否有趋势性(上升或下降)

时间序列分析有多种方法,常用方法为STL(Seasonal and Trend decomposition using Loess)算法。该方法是一种把时间序列分解为趋势项(trend component)、季节项(seasonal component)和残差项(remainder/residual component/random)的过滤过程。如下图:

STL算法在1990年由密歇根大学的R. B. Cleveland教授以及AT&T Bell实验室的W. S. Cleveland等人研发。其特点是:

  • 稳健的估计趋势项和季节项,而不会被数据中的异常行为扭曲
  • 可以指定季节项的周期为采样时间间隔任意大于一的整数倍
  • 可以分解有缺失值的时间序列

以下用纽约 1946年1月到1959年12月的每月新生儿数作为时间序列分析人口增长的规律。代码如下:

python 复制代码
#读入时间序列数据
import pandas as pd
X=pd.read_csv("https://robjhyndman.com/tsdldata/data/nybirths.dat",header=None,names=["birth"])
#绘制折线图
X.plot()
python 复制代码
#进行时间序列分析
import  statsmodels.api as sm
import matplotlib.pyplot as plt
res = sm.tsa.seasonal_decompose(X,period=12)
res.plot()
plt.xlabel("Month")
plt.show()

结果如下

可以看人口出生在第38个月左右后出生有明显上升趋势,而且从每年3月-6期间,出生人口开始进入高峰期,从8月份左右开始出生人口急速下降。

相关推荐
天下不喵22 分钟前
python项目部署之pytandic与.env的使用教程
python·docker
shenzhenNBA23 分钟前
python如何调用AI之deepseek的API接口?
人工智能·python·deepseek·调用deepseek api
咖啡の猫31 分钟前
Python集合的创建
python·哈希算法·散列表
LitchiCheng1 小时前
Mujoco 使用 Pinocchio 进行逆动力学及阻抗力矩控制维持当前位置
人工智能·python
殇者知忧1 小时前
凯斯西储(CWRU)数据集解读与数据读取
python·凯斯西储(cwru)数据集
deephub2 小时前
Scikit-Learn 1.8引入 Array API,支持 PyTorch 与 CuPy 张量的原生 GPU 加速
人工智能·pytorch·python·机器学习·scikit-learn
free-elcmacom2 小时前
机器学习高阶教程<11>当数据开始“折叠”:流形学习与深度神经网络如何发现世界的隐藏维度
人工智能·python·神经网络·学习·算法·机器学习·dnn
月明长歌2 小时前
Java数据结构:PriorityQueue堆与优先级队列:从概念到手写大根堆
java·数据结构·python·leetcode·
波克布林的矩阵6332 小时前
VS code为python文件配置默认模板
python
dhdjjsjs2 小时前
Day44 PythonStudy
python