做数据分析为何要学统计学(10)——如何进行时间序列分析

时间序列是由随时间变化的值构成,如产品销量、气温数据等等。通过对时间序列展开分析,能够回答如下问题:

  • (1)被研究对象的活动特征是否有周期性(也称季节性)
  • (2)被研究对象的活动特征是否有趋势性(上升或下降)

时间序列分析有多种方法,常用方法为STL(Seasonal and Trend decomposition using Loess)算法。该方法是一种把时间序列分解为趋势项(trend component)、季节项(seasonal component)和残差项(remainder/residual component/random)的过滤过程。如下图:

STL算法在1990年由密歇根大学的R. B. Cleveland教授以及AT&T Bell实验室的W. S. Cleveland等人研发。其特点是:

  • 稳健的估计趋势项和季节项,而不会被数据中的异常行为扭曲
  • 可以指定季节项的周期为采样时间间隔任意大于一的整数倍
  • 可以分解有缺失值的时间序列

以下用纽约 1946年1月到1959年12月的每月新生儿数作为时间序列分析人口增长的规律。代码如下:

python 复制代码
#读入时间序列数据
import pandas as pd
X=pd.read_csv("https://robjhyndman.com/tsdldata/data/nybirths.dat",header=None,names=["birth"])
#绘制折线图
X.plot()
python 复制代码
#进行时间序列分析
import  statsmodels.api as sm
import matplotlib.pyplot as plt
res = sm.tsa.seasonal_decompose(X,period=12)
res.plot()
plt.xlabel("Month")
plt.show()

结果如下

可以看人口出生在第38个月左右后出生有明显上升趋势,而且从每年3月-6期间,出生人口开始进入高峰期,从8月份左右开始出生人口急速下降。

相关推荐
MarkHD4 分钟前
智能体在车联网中的应用:第12天 Python科学计算双雄:掌握NumPy与Pandas,筑牢AI与自动驾驶数据基石
人工智能·python·numpy
hhhh明9 分钟前
日志重定向
python
再__努力1点11 分钟前
【78】HOG+SVM行人检测实践指南:从算法原理到python实现
开发语言·人工智能·python·算法·机器学习·支持向量机·计算机视觉
upper202027 分钟前
数据挖掘11
人工智能·数据挖掘
清水白石00831 分钟前
以领域为中心:Python 在 DDD(领域驱动设计)中的落地实践指南
java·运维·python
码银32 分钟前
【数据分析】基于工作与生活平衡及寿命数据集的数据分析与可视化
数据挖掘·数据分析·生活
猫头虎38 分钟前
PyCharm 2025.3 最新变化:值得更新吗?
ide·爬虫·python·pycharm·beautifulsoup·ai编程·pip
ekprada42 分钟前
DAY45 TensorBoard深度学习可视化工具
人工智能·python
轻竹办公PPT44 分钟前
PPT生成效率提升的方法:AI生成PPT实战说明
人工智能·python·powerpoint
YJlio1 小时前
Python 一键拆分 PDF:按“目录/章节”建文件夹 + 每页单独导出(支持书签识别&正文识别)
开发语言·python·pdf