力扣108. 将有序数组转换为二叉搜索树(三种思路)

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
> 示例 1:

输入 :nums = [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5]
解释 :[0,-10,5,null,-3,null,9] 也将被视为正确答案:

> 示例 2:

输入:nums = [1,3] 输出:[3,1] 解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

1 <= nums.length <= 104

-104 <= nums[i] <= 104 nums 按 严格递增 顺序排列
方法一 :中序遍历,总是选择中间位置左边的数字作为根节点 选择中间位置左边的数字作为根节点,则根节点的下标为

mid=(left+right)/2\textit{mid}=(\textit{left}+\textit{right})/2mid=(left+right)/2,此处的除法为整数除法。

java 复制代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return HeightBalenced(nums,0,nums.length - 1);
    }
    public TreeNode HeightBalenced(int[] nums, int left, int right){
        if(left > right){
            return null;
        }
        //总是选择中间位置左边的数字作为根节点
        int mid = (left + right) / 2;

        TreeNode root = new TreeNode(nums[mid]);
        root.left = HeightBalenced(nums,left,mid - 1);
        root.right = HeightBalenced(nums,mid + 1,right);
        return root;
    }
}

复杂度分析

时间复杂度:O(n),其中 n是数组的长度。每个数字只访问一次。

空间复杂度:O(log⁡n),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O(log⁡n)。

方法二 :中序遍历,总是选择中间位置右边的数字作为根节点

选择中间位置右边的数字作为根节点,则根节点的下标为 mid=(left+right+1)/2\textit{mid}=(\textit{left}+\textit{right}+1)/2mid=(left+right+1)/2,此处的除法为整数除法。

java 复制代码
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return helper(nums, 0, nums.length - 1);
    }

    public TreeNode helper(int[] nums, int left, int right) {
        if (left > right) {
            return null;
        }

        // 总是选择中间位置右边的数字作为根节点
        int mid = (left + right + 1) / 2;

        TreeNode root = new TreeNode(nums[mid]);
        root.left = helper(nums, left, mid - 1);
        root.right = helper(nums, mid + 1, right);
        return root;
    }
}

复杂度分析

时间复杂度:O(n),其中 n 是数组的长度。每个数字只访问一次。

空间复杂度:O(log⁡n),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O(log⁡n)

方法三 :中序遍历,选择任意一个中间位置数字作为根节点

选择任意一个中间位置数字作为根节点,则根节点的下标为 mid=(left+right)/2\textit{mid}=(\textit{left}+\textit{right})/2mid=(left+right)/2 和 mid=(left+right+1)/2\textit{mid}=(\textit{left}+\textit{right}+1)/2mid=(left+right+1)/2 两者中随机选择一个,此处的除法为整数除法。

java 复制代码
class Solution {
    Random rand = new Random();

    public TreeNode sortedArrayToBST(int[] nums) {
        return helper(nums, 0, nums.length - 1);
    }

    public TreeNode helper(int[] nums, int left, int right) {
        if (left > right) {
            return null;
        }

        // 选择任意一个中间位置数字作为根节点
        int mid = (left + right + rand.nextInt(2)) / 2;

        TreeNode root = new TreeNode(nums[mid]);
        root.left = helper(nums, left, mid - 1);
        root.right = helper(nums, mid + 1, right);
        return root;
    }
}

复杂度分析

时间复杂度:O(n),其中 n 是数组的长度。每个数字只访问一次。

空间复杂度:O(log⁡n),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O(log⁡n)

相关推荐
CoovallyAIHub3 小时前
港大&字节重磅发布DanceGRPO:突破视觉生成RLHF瓶颈,多项任务性能提升超180%!
深度学习·算法·计算机视觉
CoovallyAIHub4 小时前
英伟达ViPE重磅发布!解决3D感知难题,SLAM+深度学习完美融合(附带数据集下载地址)
深度学习·算法·计算机视觉
聚客AI21 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v1 天前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工1 天前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农1 天前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了1 天前
AcWing学习——双指针算法
c++·算法
moonlifesudo1 天前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法