力扣108. 将有序数组转换为二叉搜索树(三种思路)

给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。

高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。
> 示例 1:

输入 :nums = [-10,-3,0,5,9] 输出:[0,-3,9,-10,null,5]
解释 :[0,-10,5,null,-3,null,9] 也将被视为正确答案:

> 示例 2:

输入:nums = [1,3] 输出:[3,1] 解释:[1,null,3] 和 [3,1] 都是高度平衡二叉搜索树。

提示:

1 <= nums.length <= 104

-104 <= nums[i] <= 104 nums 按 严格递增 顺序排列
方法一 :中序遍历,总是选择中间位置左边的数字作为根节点 选择中间位置左边的数字作为根节点,则根节点的下标为

mid=(left+right)/2\textit{mid}=(\textit{left}+\textit{right})/2mid=(left+right)/2,此处的除法为整数除法。

java 复制代码
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return HeightBalenced(nums,0,nums.length - 1);
    }
    public TreeNode HeightBalenced(int[] nums, int left, int right){
        if(left > right){
            return null;
        }
        //总是选择中间位置左边的数字作为根节点
        int mid = (left + right) / 2;

        TreeNode root = new TreeNode(nums[mid]);
        root.left = HeightBalenced(nums,left,mid - 1);
        root.right = HeightBalenced(nums,mid + 1,right);
        return root;
    }
}

复杂度分析

时间复杂度:O(n),其中 n是数组的长度。每个数字只访问一次。

空间复杂度:O(log⁡n),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O(log⁡n)。

方法二 :中序遍历,总是选择中间位置右边的数字作为根节点

选择中间位置右边的数字作为根节点,则根节点的下标为 mid=(left+right+1)/2\textit{mid}=(\textit{left}+\textit{right}+1)/2mid=(left+right+1)/2,此处的除法为整数除法。

java 复制代码
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        return helper(nums, 0, nums.length - 1);
    }

    public TreeNode helper(int[] nums, int left, int right) {
        if (left > right) {
            return null;
        }

        // 总是选择中间位置右边的数字作为根节点
        int mid = (left + right + 1) / 2;

        TreeNode root = new TreeNode(nums[mid]);
        root.left = helper(nums, left, mid - 1);
        root.right = helper(nums, mid + 1, right);
        return root;
    }
}

复杂度分析

时间复杂度:O(n),其中 n 是数组的长度。每个数字只访问一次。

空间复杂度:O(log⁡n),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O(log⁡n)

方法三 :中序遍历,选择任意一个中间位置数字作为根节点

选择任意一个中间位置数字作为根节点,则根节点的下标为 mid=(left+right)/2\textit{mid}=(\textit{left}+\textit{right})/2mid=(left+right)/2 和 mid=(left+right+1)/2\textit{mid}=(\textit{left}+\textit{right}+1)/2mid=(left+right+1)/2 两者中随机选择一个,此处的除法为整数除法。

java 复制代码
class Solution {
    Random rand = new Random();

    public TreeNode sortedArrayToBST(int[] nums) {
        return helper(nums, 0, nums.length - 1);
    }

    public TreeNode helper(int[] nums, int left, int right) {
        if (left > right) {
            return null;
        }

        // 选择任意一个中间位置数字作为根节点
        int mid = (left + right + rand.nextInt(2)) / 2;

        TreeNode root = new TreeNode(nums[mid]);
        root.left = helper(nums, left, mid - 1);
        root.right = helper(nums, mid + 1, right);
        return root;
    }
}

复杂度分析

时间复杂度:O(n),其中 n 是数组的长度。每个数字只访问一次。

空间复杂度:O(log⁡n),其中 n 是数组的长度。空间复杂度不考虑返回值,因此空间复杂度主要取决于递归栈的深度,递归栈的深度是 O(log⁡n)

相关推荐
苏纪云12 分钟前
数据结构期中复习
数据结构·算法
flashlight_hi23 分钟前
LeetCode 分类刷题:141. 环形链表
javascript·算法·leetcode
初听于你33 分钟前
Java五大排序算法详解与实现
数据结构·算法·排序算法
多多*33 分钟前
牛客周赛 Round 117 ABCDE 题解
java·开发语言·数据结构·算法·log4j·maven
liu****42 分钟前
13.POSIX信号量
linux·开发语言·c++·算法·1024程序员节
熬夜敲代码的小N44 分钟前
仓颉ArrayList动态数组源码分析:从底层实现到性能优化
数据结构·python·算法·ai·性能优化
大白的编程日记.1 小时前
【高阶数据结构学习笔记】高阶数据结构之B树B+树B*树
数据结构·笔记·学习
Kt&Rs2 小时前
11.9 LeetCode 题目汇总与解题思路
算法·leetcode
ゞ 正在缓冲99%…2 小时前
leetcode1547.切棍子的最小成本
数据结构·算法·leetcode·动态规划
2401_841495643 小时前
【LeetCode刷题】移动零
数据结构·python·算法·leetcode·数组·双指针法·移动零