StyleSync 开源部分总结

https://github.com/guanjz20/StyleSync_PyTorch

这个是号称最强的模型. 说百分之99拟合真人. 我们赶紧来学习.

首先权重和训练是不开源的. 我也只能尽可能的根据发布的代码来看能学到什么.

先说结论: 整体跟wav2lip百分之90相似. 都是视频--->图片--->抽取人脸landmark->每个图片根据音频生成新的图片->ffmpeg把图片变成视频即可.

==========首先我们看inference.py
parser.add_argument('--img_size', type=int, default=256)======这里跟wav2lip 的96比变大了. 所以结果demo看得出来明显比wav2lip生成的分辨率高很多
face, affine_matrix = restorer.align_warp_face(img.copy(), lmks3=lmk3_, smooth=True) ==========这里进行了人脸变形.
face = cv2.resize(face, (args.img_size, args.img_size), interpolation=cv2.INTER_CUBIC) 然后人脸resize
然后他还使用了mask
face_masked = face.copy() * img_mask 对人脸以外部分进行了保护.
pred = model(img_batch, mel_batch) # 预测新脸
pred = cv2.resize(pred, (x2 - x1, y2 - y1), interpolation=cv2.INTER_CUBIC) # resize回去
out_img = restorer.restore_img(img, pred, affine_matrix) # 逆仿射把人脸变回去.
#最后ffmpeg写入视频.
总结确实比wav2lip 加入很多细节处理. 预处理和后处理!!!!!可以借鉴!!!!!!!!!!
================stylesync_model.py 下面我们分析这个文件
audioConv2d audio也用了conv计算.
加入了一些噪音好像
mask_n_noise. 后续的有时间看论文再找找有用的吸收洗手.
======================结束======================

相关推荐
DisonTangor4 小时前
【小米拥抱开源】小米MiMo团队开源309B专家混合模型——MiMo-V2-Flash
人工智能·开源·aigc
yumgpkpm6 小时前
Iceberg在Cloudera CDP集群详细操作步骤
大数据·人工智能·hive·zookeeper·spark·开源·cloudera
yumgpkpm8 小时前
Iceberg在Hadoop集群使用步骤(适配AI大模型)
大数据·hadoop·分布式·华为·zookeeper·开源·cloudera
隐语SecretFlow11 小时前
【技术教程】TrustFlow 授权策略是怎么实现的?
性能优化·架构·开源
源雀数智12 小时前
2025年度企微开源项目分享:源雀SCRM
开源·企业微信·流量运营
陪我去看海12 小时前
JueJin-MCP:AI文章自动发布神器
开源
济南壹软网络科技有限公司12 小时前
高并发电商实战:基于Java生态的多元化盲盒系统技术实现方案
java·开发语言·开源·盲盒源码·盲盒定制开发
蓝卓工业操作系统13 小时前
开源赋能全球智造,蓝卓Open supOS捐赠仪式开启产业协作新纪元
人工智能·开源·工业互联网·工厂操作系统·蓝卓
镜舟科技13 小时前
活动回顾 | 镜舟科技出席鲲鹏开发者创享日・北京站
starrocks·数据分析·开源·数字化转型·华为鲲鹏·lakehouse·镜舟科技