回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)

回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)

目录

    • [回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)](#回归预测 | MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图))

效果一览


基本介绍

CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 Matlab程序

1.多变量输入单输出 效果如图所示 算法用的人少~

2.直接替换Excel数据即可用 适合新手小白~

3.附赠案例数据 直接运行main一键出图~

3.直接替换Excel数据即可用,注释清晰,适合新手小白。

4.附赠示例数据,可直接运行。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现CHOA-BiLSTM黑猩猩优化算法优化双向长短期记忆网络回归预测 (多指标,多图)
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('data.xlsx');

%%  划分训练集和测试集
temp = randperm(103);

P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);

P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);



%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);

%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);

%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);



%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;

disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])

% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;

disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])

% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;

disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161

[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关推荐
Mr.看海5 个月前
【深度学习-第6篇】使用python快速实现CNN多变量回归预测(使用pytorch框架)
pytorch·python·深度学习·cnn·回归预测
The hopes of the whole village6 个月前
matlab回归学习
学习·matlab·回归预测
是阿牛啊6 个月前
【01-机器学习入门:理解Scikit-learn与Python的关系】
机器学习·分类·数据分析·sklearn·回归预测·模型预测·pyhton
叶庭云7 个月前
全面整理!机器学习常用的回归预测模型(表格数据)
机器学习·回归预测·表格数据·预测建模·全面整理
机器学习之心8 个月前
回归预测 | Matlab实现GSWOA-KELM混合策略改进的鲸鱼优化算法优化核极限学习机的数据回归预测
核极限学习机·回归预测·数据回归预测·gswoa-kelm·混合策略改进的鲸鱼优化算法
随风飘摇的土木狗8 个月前
【MATLAB第97期】基于MATLAB的贝叶斯Bayes算法优化BiGRU双向门控循环单元的多输入单输出回归预测模型,含GRU与BiGRU多层结构优化选择
matlab·贝叶斯·双向门控循环单元·gru·回归预测·bigru·长短期记忆网络
神经网络与数学建模8 个月前
多输入回归预测|GWO-CNN-LSTM|灰狼算法优化的卷积-长短期神经网络回归预测(Matlab)
深度学习·matlab·cnn·lstm·回归预测·灰狼优化算法
随风飘摇的土木狗9 个月前
【MATLAB第96期】基于MATLAB的SVM(线性)、SVM(高斯)、决策树、KNN等机器学习算法回归及分类Boost集成学习模型(含不同模型权重)
机器学习·matlab·分类预测·集成学习·回归预测·boost·融合
机器学习之心9 个月前
2024美赛预测算法 | 回归预测 | Matlab基于RIME-LSSVM霜冰算法优化最小二乘支持向量机的数据多输入单输出回归预测
回归预测·多输入单输出·最小二乘支持向量机·霜冰算法优化·2024美赛预测算法·rime-lssvm
随风飘摇的土木狗9 个月前
【MATLAB第92期】基于MATLAB的集成聚合多输入单输出回归预测方法(LSBoost、Bag)含自动优化超参数和特征敏感性分析功能
matlab·回归预测·多输入单输出·敏感性分析·lsboost·bag·优化超参数